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Comparing Penalty Functions in 

Balancing and Disaggregating Social 

Accounting Matrices 
 

BY WOLFGANG BRITZa

Constructing a balanced and sufficiently detailed Social Accounting Matrix (SAM) 
is a necessary step for any work with Computable General Equilibrium (CGE) 
models. Even when starting with a given SAM, researchers might wish to develop 
their own, more detailed variants for a specific study by dis-aggregating sectors and 
products, a process termed splitting the SAM. We review three approaches for 
balancing and splitting a SAM: Cross-Entropy (CE), a Highest Posterior Density 
(HPD) estimator resulting in a quadratic loss penalty function, and a linear loss 
penalty function. The exercise considers upper and lower bounds on the (new) SAM 
entries, different weights for penalizing deviations from a priori information, and 
unknown row or column totals, to give the user flexibility in controlling outcomes. 
The approaches are assessed first by a systematic Monte-Carlo experiment. It re-
balances smaller SAMs, after errors with known distributions are added. Here we 
find quite limited numerical differences between the CE and quadratic loss 
approaches. The CE approach was however considerably slower than the other 
candidates. Second, we tested the three approaches for dis-aggregating the Global 
Trade Analysis Project (GTAP) data base to provide, as an example, further agri-
food detail. In such empirical applications, the distribution of the errors of the new 
SAM entries is typically not known. As in the SAM balancing exercise, we use 
CONOPT4 as a multi-purpose (non)linear solver which can be also be employed to 
solve the CGE model itself. For comparison, we add the specialized Linear and 
Quadratic Programming (QP) solvers CPLEDX and GUROBI. As in the Monte-
Carlo experiment, the differences in results between the three approaches were 
moderate. The specialized solvers require very little time to solve the linear and 
quadratic loss problems. However, they did not achieve the same, very high accuracy 
as CONOPT4 for the quadratic loss problem. The CE problem could take longer by 
a factor of 100 or more, compared to a linear or quadratic loss approach solved with 
the specialized solvers. We conclude that using linear or quadratic loss approaches, 
especially combined with a specialized solver, are the most suitable candidates for 
larger SAM splitting / balancing problems. Additionally, we present a fast and 
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accurate data processing chain to yield a benchmark data set for a CGE model from 
the GTAP Data Base which involves filtering out small cost, expenditure and 
revenue shares, and allows users to introduce further product and sectoral detail 
based on user provided information.  

JEL codes: C67, C63, C88. 

Keywords: Data balancing; SAM balancing; Highest posterior density; Cross 
entropy. 

1. Introduction 

Building up the data base for a global Computable General Equilibrium (CGE) 
model requires merging different data sets while adhering to exhaustion 
conditions, macro-economic identities and other constraints. It yields as the main 
output a balanced Social Accounting Matrix (SAM) which provides a benchmark 
for subsequent counterfactual analysis.1 To do so, different approaches have been 
suggested, frequently classified into iterative procedures such as RAS and penalty 
function approaches defined as a constrained (non)-linear optimization problem.2 
After briefly reviewing three penalty approaches, this paper systematically 
compares their performance, using first controlled matrix balancing problems and 
second differently detailed empirical problems which dis-aggregate the global 
GTAP Data Base with regard to products and sectors. Here, we compare both 
different approaches and solvers, assessing resulting differences in simulation 
results under a shock. As inputs, we use data bases with are aggregated to 
different regional detail and sector/product resolution for the sectors and 
products not subject to dis-aggregation. 

Different authors discuss competing approaches for balancing data sets such as 
a SAM. Schneider and Zenios (1990), for instance, compare RAS and constrained 
optimization with quadratic, entropy and linear penalty functions with a focus on 
computational aspects. They highlight the possibility to introduce user-imposed 
bounds, to estimate unknown row/column totals, and to consider different data 
reliabilities for the SAM entries as advantages of the constrained optimization 
approach. Their empirical tests involved a SAM balancing problem with around 
1,600 transactions, reflecting the computational possibilities at the time their paper 
was published. They found limited differences in the SAMs produced by the 
considered approaches. We follow to some degree their approach in here. Other 

 
1 The Global Trade Analysis Project (GTAP) Data Base is not delivered as a SAM but can 
be easily organized into one. 
2 The abbreviation RAS seems to be introduced by Richard Stone in some notes; 
presumably the A stands for the Leontief matrix, and R and S for his initials (Lahr and De 
Mesnard 2004)  
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scholars improve RAS algorithms such as Lenzen et al. (2009) to overcome 
limitations of the standard RAS approach as mentioned by Schneider and Zenios 
(1990). This brings flexibility to RAS closely matching the constrained 
optimization approaches, while still not allowing for bounds or inequality 
restrictions. Round (2003) more generally discusses the construction of SAMs with 
a focus on single country work. He again compares different balancing 
approaches, concluding that a quadratic loss “is still likely to offer the most 
flexibility to compilers of SAMs.” Cardenete and Sancho (2003) compare Cross-
Entropy (CE) and RAS in a single country SAM updating exercise. They find quite 
limited differences in simulation results under the same shock when using the 
SAMs resulting from the two approaches. We borrow their idea to check if 
different approaches to dis-aggregate the very same SAM based on the same a-
prori information impact simulation outcomes. 

We conclude from the existing literature that it still gives limited guidance on 
what approach to use, especially in the context of multi-regional CGE modelling 
where the size of the SAM tends to be larger than in examples so far assessed by 
the literature. This paper therefore first adds viewpoints of empirical relevance to 
the comparison, such as accuracy, important for later benchmarking of the CGE 
model, or how to avoid tiny cost or expenditure shares. Second, approaches are 
also assessed on large global multi-regional empirical applications. Specifically, 
we present and discuss a data-generation chain which constructs a SAM from the 
GTAP 9 Data Base (Aguiar et. al. 2016), filters out small cost/revenue/expenditure 
shares to a desired threshold, re-balances the global data sets, and dis-aggregates 
it to further sector and product detail to yield a final data set for benchmarking. A 
combination of partly sequentially applied constrained optimization approaches 
and G-RAS aims at delivering a robust framework. It can deal with badly 
conditioned sparse and large global data sets, inconsistent split information, while 
being fast and delivering very accurately balanced matrices. Third, we aim at 
comparing the quadratic loss approach against a CE one, also from a statistical 
point of view. Instructions and files to replicate our experiments are included in 
the supplementary materials published with this manuscript. 

Our paper is structured as follows. It first provides a brief more general view 
on data balancing before we motivate the choice of the considered approaches. The 
following main body of the paper compares these approaches first based on 
Monte-Carlo experiments with constructed square matrices under known 
distributions of the error terms, and next on more complex SAM dis-aggregation, 
applied to differently detailed global data sets. 

2. A general view on data balancing and fusion 

In the context of economic modelling, data balancing and fusion, i.e. the 
merging of different data sources into a final data product, aims at a data set which 
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allows for benchmarking of the simulation model. For econometric exercises, 
balancing the data before estimation makes mostly limited sense as it overshadows 
the original errors found in the raw data and thus might prevent their proper 
identification. Balancing for an equilibrium model requires at least the set of 
identities to hold which is part of model’s equations, such as closed market 
balances, other exhaustion conditions and potentially macro-economic accounting 
identities. This might include to simultaneously balance monetary and physical 
data (Többen et al., 2018). Ensuring non-negativity is also necessary for many 
items, to exclude, for instance, negative consumption, production or trade 
volumes and related prices. This might require bounds on estimates relative to 
other ones, for instance, to avoid output subsidy values exceeding output values 
at market prices, restrictions necessary as the usual functional forms cannot handle 
negative costs or revenues. Furthermore, upper and lower bounds, for instance on 
selected cost shares, might be useful to ensure plausibility. They can reflect domain 
knowledge, such as engineering information on production processes, or can be 
derived from the distribution of such shares in given data. Necessary and desirable 
properties of a data set for benchmarking are thus expressed as equalities and 
inequalities which jointly define the constraints of a data balancing problem. 
Suitable algorithms should therefore allow consideration of, besides row and 
column totals, subtotals, bounds and inequalities, as partly mentioned already by 
Schneider and Zenios (1990). 

Data balancing aims to find data that fits the required restraints while 
maintaining as much information as possible from the original, unbalanced data. 
The reasons why raw data might not automatically fulfil these constraints are 
potentially manifold, for instance: measuring errors, differences related to 
definitions or to reporting periods, assumptions made to fill gaps. Staying as close 
as possible to raw data information when fitting to constraints and bounds 
requires a penalty function, which can be explicit as in constrained optimization 
approaches or implicit such as in RAS. This function minimizes some difference 
metric between the original raw and the final balanced data set. Penalty functions 
can be motivated based on different concepts. From a Bayesian perspective, the 
constraints provide additional “data” information on the estimates; the posteriori 
probability density of any data set not fitting in the constraints is zero. Similarly, 
in entropy approaches, the constraints force deviations from the a-priori 
distribution. They are penalized based on the entropy criterion which provides a 
distance measure between the a-priori and posteriori distribution. Other 
approaches such as minimizing absolute differences, also called linear loss, might 
not directly root in statistical theory, but might work well from an algorithmic 
viewpoint and give similar results. 

Besides adhering to constraints and maintaining as much information as 
possible from raw data, another potentially desired property of the final data set 
is some sparsity, i.e. avoiding that many data cells comprise irrelevant small 
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expenditure, revenue or cost shares. Having all cells more or less filled guarantees 
that balancing can be achieved (not considering bounds). But resulting small 
shares and tiny numbers can lead to unwanted consequences in subsequent model 
applications. Finding appropriate rules for when small numbers can be considered 
irrelevant is challenging and at least needs reflecting on which expenditure, costs 
or revenue totals they relate to, a point discussed in more detail below. From a 
user perspective, ease of use, speed and robustness are clearly further properties 

to consider for candidate approaches. 

3. Candidate algorithms for data balancing 

Various algorithms or approaches exist for data balancing. For problems with 
adding-up constraints only, RAS is a suitable candidate. The basic RAS does not 
handle well negative and positive entries in a row or column, for which extensions 
such as G-RAS are available. Lenzen et al. (2009) discuss these and further 
modifications to the original RAS which can address other shortcoming of the 
basic RAS approach. Krebs (2018), for instance, discusses a RAS extension where 
only sub-total sums over multiple rows or columns are known. These extensions 
bring flexibility to RAS closely matching constrained optimization set-ups. All 
RAS variants are iterative approaches which can be easily programmed in any 
programming language including Algebraic Modelling Languages (AMLs) such 
as the General Algebraic Modeling System (GAMS).3 Like any other algorithm 
implemented in a computer, their accuracy is restricted. RAS approaches can 
therefore stall such that their application requires a maximal number of iterations.  

When the balancing constraints also comprise inequalities including bounds on 
data items, the problem turns into a constrained optimization problem which 
cannot be handled by RAS approaches. Constrained optimization frameworks can 
be defined rather flexibly in AMLs, while adding controls, for instance, for sub-
totals in extended RAS applications might require higher programming efforts. 
RAS variants are executed at least in GAMS as an AML in the relative slow 
scripting mode. In opposite to this, the solvers applied to constrained optimization 
problems in AMLs are programmed in more efficient software languages such as 
C or FORTRAN. Moreover, solvers comprise automatic and potentially dynamic 
scaling, and other algorithm features which reflect the maximal accuracy of the 
underlying computer hardware, visible, for instance, from default feasibility and 
optimality tolerances. 

The penalty function used in a constrained optimization problem can draw on 
different concepts. Since the 1996 book on Maximum Entropy Econometrics by 

 
3 We provide as part of the GAMS code which documents the Monte-Carlo experiments a 
GAMS script for a RAS. This specific RAS algorithm can handle negative and positive SAM 
entries. 
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Golan, Judge and Miller (1996), entropy approaches became fashionable for SAM 
balancing and have been successfully applied by many scholars (Robinson et al., 
2001). More generally, applications of entropy (econometrics) in economics, see 
the reviews by Golan (2008) and Jakimowicz (2020), are widespread and 
encompass many data balancing applications, for instance, estimation of demand 
systems, of worker mobility across sectors, of market power and strategies, or of 
stock market returns. 

The entropy criterion can be used for continuous distributions. CE applications 
to data balancing problem usually employ discrete probably distributions instead, 
represented by a set of so-called support points with attached a-priori 
probabilities. Each support can be understood as a one of several potential 
outcomes for an item to estimate, weighting them with the a-priori probabilities 
defines the expected mean. The supports and their probabilities might 
approximate a continuous distribution to ease computations. Maximum Entropy 
(ME) refers to an approximation of a uniform distribution based on equally 
distanced supports and equal probabilities attached to them. CE frameworks 
instead can attach non-equal probabilities to the supports while the support space 
can be freely chosen, which jointly allows approximating any distribution. The 
minimum and maximum supports for each item act directly as bounds on the 
estimates and can provoke infeasibilities which are not related to the constraints. 
ME and CE frameworks introduce the posteriori probabilities related to the 
supports as additional variables in the data balancing problem along with bounds 
which ensure their admissible range. For each item to estimate, two additional 
equations are needed to define the estimate from the endogenous probabilities and 
the supports, and to ensure adding up of these probabilities. Furthermore, the 
entropy penalty function uses logarithms which restricts the choice of solvers for 
such problems. Generalized ME and CE framework provide a-priori information 
both on parameters to estimate and on error terms. Data balancing problems 
usually define supports directly on the parameters as the data to estimate or solely 
on their errors, but not simultaneously on both. They should therefore be classified 
as ME or CE frameworks. If A is the given unbalanced matrix and X the final 
balanced one, RAS converges to point with minimizes  (Bregman 

1967) which is equivalent to CE if x are probabilities. As pointed out by McDougall 
(1999), RAS is therefore solving a specific CE framework and a method of choice 
if no distributional data besides the unbalanced matrix A is available. 

A conceptual alternative to the entropy criterion is the Bayesian concept of 
Posterior Density which maximizes the posterior likelihood of the distribution of 
the error terms given their a-priori distribution. Specifically, a Highest Posterior 
Density (HPD) Estimator (Heckelei et al., 2008) is an estimation framework where 
the given raw data set, subject to balancing constraints, provides the a-priori 
information. Accounting identities and additional constraints describing the 
desired properties of the balanced data set are treated as the data information. A 
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HPD estimator will maximize the Posterior Density which can be understood as a 
maximum likelihood estimator given both the a-priori and data information. This 
requires, as for the entropy criterion, in addition to the observed data which are 
treated as the expected means, assumptions on the distribution of their errors.  

Similar to CE approaches, the HPD approach has been successfully 
implemented in a number of fields such as large-scale data fusion for supply side 
and partial equilibrium models (Britz and Witzke 2012), downscaling of crop 
shares at continental scale to a 1x1 km grid where error distributions reflect 
statistical estimates (Leip et al., 2008), spatial allocation of farming systems 
(Kempen et al., 2011), and parameter estimation of economic models (Jansson and 
Heckelei 2010). HPD is most often applied assuming normally distributed errors 
of the given raw data such that the log maximum likelihood problem results in a 
quadratic objective to minimize. Round (2003) states that, given a variance and 
covariance matrix associated with the elements of the dataset to balance, the 
related constrained weighted least squares problem is the best linear unbiased 
estimator of the true elements. As this approach was proposed already by Stone 
(1976) and further formalized by Byron (1978), the approach is often called the 
Stone-Byron method. Both a CE and a quadratic loss function can therefore be 
motivated from numerical statistics. This view is still not generally shared, 
Lemelin et al. (2013) for instance state “Although the quadratic loss function is 
widespread, its theoretical foundations in the SAM balancing context are weak, 
compared to the cross-entropy loss function, which is grounded in information 
theory.”  

HPD applications and many CE applications assume normally distributed 
errors and are therefore close cousins to a quadratic loss approach, a point we will 
numerically assess below. In the same vain, reviewing the literature, Round (2003) 
concludes “The relatively close analytical relationships between the most 
frequently used alternative methods for balancing SAMs suggest that if the 
required adjustments are relatively small, then the differences between the 
methods are likely also to be small”. For a HPD problem with normally distributed 
error terms, defining the data constraints as linear (in)equalities results in a 
linearly constrained quadratic programming problem for which highly efficient 
algorithms are implemented in quadratic programming solvers such as CLPEX or 
GUROBI. Unlike in entropy approaches, the objective function can directly work 
on the estimates such that fewer variables and equations are required. Equally, the 
penalty function itself does not restrict the range of the estimates. This can be seen 
as an advantage or as a dis-advantage as it implies the necessity to add bounds 
explicitly, e.g., to ensure non-negativity or more general to exclude sign changes. 

Finally, a penalty function can also be defined more ad-hoc such as minimizing 
absolute differences. This specific case requires additional variables which split 
each error term into a positive and negative variable, typically using an additional 
equation as well. A linear loss penalty might be motivated by assuming uniformly 



Journal of Global Economic Analysis, Volume 6 (2021), No. 1, pp.  34-81. 

 
 

 41 

distributed errors with a wide spread. For the simple Monte-Carlo experiments 
discussed in the next section, we provide the GAMS code in Appendix A and in 
the supplementary materials published with this manuscript. The GAMS code for 
the empirical application is part of the open source and open access framework for 
CGE modelling called CGEBox (Britz and Van der Mensbrugghe 2018). 

Independent of the penalty function used, errors can be assumed identically 
distributed in absolute or relative terms over all data entries balanced. 
Alternatively, some weighting can be introduced by assuming larger or smaller 
absolute or relative errors for certain data cells. Frequently, to give an example, no 
or small errors on macro-totals such as the Gross Domestic Product or the Balance 
of Trade are assumed. Weighting errors can have quite distinct impacts on the 
balanced data set. As choices for weights are unlimited, we refrain from 
comparisons of using different weights in this paper.  

Using constrained optimization frameworks in data balancing can lead to 
unexpected outcomes due the interaction between the penalty function and the 
constraints. This point is also raised by McDougall (1999) when comparing a 
proportionality assumption with a maximum sum of entropies approach. A 
simple example can illustrate this. Imagine a problem with only two data items 
subject to adding up to a given total. Assume further the same coefficient of 
variance of their error terms. The obvious solution would be to update both items 
with the same multiplicative correction factor, i.e., the usual proportionality 
assumption. That is however not the solution an optimization framework will 
deliver. The reason can be found in the first-order conditions of the problem: the 
penalty terms in the objective are weighted with their contribution to remove 
infeasibilities. The same relative change to large and small entries entering the 
same accounting identity leads to different changes in its infeasibility. This 
motivates while the solver will introduce larger relative changes to larger items, 
even if they have the same user chosen weights in the objective function as smaller 
ones; a behaviour which is independent of the penalty function used. 

A comparison of approaches using a penalty function to RAS-based algorithms 
only makes sense if the data balancing problem can be expressed by equalities 
only, as RAS cannot handle inequalities, including bounds on variables. We 
therefore cannot include RAS in the comparisons for the more involved dis-
aggregation examples. RAS is however covered in our Monte-Carlo matrix 
balancing exercise. Our GAMS codes therefore comprise a script for a Generalized 
RAS with features to improve numerical accuracy on badly-scaled matrices. 

Both CE and HPD frameworks require assumptions on distributions of the 
error terms which are usually not observable. To give an example, Sherman 
Robinson’s widely used code to balance SAMs by CE uses the observed row-
column sum differences of the yet to balance data, in conjunction with assuming a 
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uniform relative error to define supports.4 This reasonable choice is still different 
from knowing the true distribution of the error terms of the individual SAM 
entries. A HPD approach would need to be similarly quantified. But if the true 
distribution of the errors is unknown, we cannot compare different approaches 
with regard to the fit, a point also mentioned in earlier comparison papers such as 
Round (2003). Cardenete and Sancho (2003), therefore, compare approaches in a 
SAM updating exercise where a SAM for the update year is known. But outcomes 
on just one data set can clearly not provide general guidance. This motivates why 
we use a systematic Monte-Carlo analysis with known errors first. For the 
empirical application with unknown error terms, we calculate the mean outcome 
across different penalty approaches and assess differences across them. 

The often-assumed normality of the error terms can be challenged. If items are 
only defined on the non-negative domain, one would require at least some 
truncated distribution. Measurement errors resulting, e.g. from rounding data to 
a number of digits, will not lead to normal distributed error terms either. The same 
holds quite probably for errors resulting from using computer code to balance 
data. These considerations are not an argument against carefully chosen penalty 
approaches, but underline that our a-priori knowledge about the error terms is at 
best limited. Consequently, there is limited guidance from a methodological point 
of view on which distribution to use, and following from this, which penalty 
approach to choose. Moreover, other viewpoints besides an elegant underlying 
statistical concept might be important in large-scale real-world data balancing 
applications. 

Accordingly, we propose to compare different penalty approaches based on (1) 
numerical stability, such as number of test instances where the algorithm fails to 
find a feasible or optimal solution, (2) numerical accuracy, (2) solution time, (3) 
availability of solvers and related costs, (4) programming efforts. Comparison tests 
are far from straightforward as solvers comprise partially probabilistic heuristics 
and might therefore by chance show a different performance on different penalty 
function approaches for the same test case. We therefore perform sensitivity 
analysis and use different solvers. Furthermore, we asses two cases: first a Monte-
Carlo experiment where square matrices with known properties of the error 
distribution are balanced, and second an empirical application to larger SAM 
splitting exercises where error distributions are, as in most applications, unknown. 

 
4 The code is available in the GAMS example model library at 
https://www.gams.com/latest/gamslib_ml/libhtml/gamslib_cesam2.html 
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4.  A Monte-Carlo Exercise to SAM balancing 

4.1 Set up 

To assess the three candidate penalty functions discussed above (CE, HPD, 
linear loss) plus RAS in a controlled environment, a Monte-Carlo approach 
constructs unbalanced squared matrices with known error terms. It generates 
artificial ”SAMs” with either 20, 30 or 40 rows and columns, i.e. 400, 900 or 1,600 
entries, by first drawing these entries from a log-normal distribution with 
exp(n~(0,3)) truncated at 1.E+8 and 1.E-8. From there, column and row sums are 
defined as the average of the unbalanced matching row and column sums. 
Subsequently, the matrix is balanced with a Generalized RAS. This step results for 
each draw in a balanced constructed “SAM” with known distribution of the 
entries. Next, white noise error from 𝑛~(0, 𝜎2) with 𝜎 = {0.1, 0.5, 1, 2, 5} is added 
to each entry. The three penalty functions proposed above (CE, HPD and absolute 
differences) plus RAS are used to balance these SAMs. The CE uses five supports 
[-3; -1.5; 0; +1.5;+3] with attached a priori probabilities [1/162, 1/81, 48/81, 
16/81,1/162]  
to approximate the given normal distribution of the error terms, following 
Robinson et al. (2001). The HPD and linear loss minimize, respectively, squared 
and linear differences without any weights. The 300 drawn SAMs result in 100 x 
(400+900+1.600) = 290,000 SAM entries. This seems sufficient to assess the 
performance of the estimators. 

The five supports of the CE can approximate four moments (mean, variance, 
skewness, kurtosis) of any distribution of the error terms (Robinson et al., 2001) 
without changes in the code required and (potentially) larger impacts on solution 
behaviour. Compared to this, the HPD estimator is more restrictive and efficient 
only for the case of a normal distribution. 

For comparison, we also add a Generalized RAS with Diagonal Similarity 
Scaling (DSS) if the Generalized RAS approach stalls, programmed in GAMS. 5 
This is not a very efficient implementation, not allowing for a fair evaluation of its 
speed compared to the solvers. 

The basic structure of the SAM balancing with rows and columns i,j consists of 
the following two balancing equations where  denotes the endogenous SAM 

entries to estimate and totali the given identical row and column sums: 
 

 
5 The DSS algorithm, described in Schneider and Zenios (1990), sequentially scales the 
column-row combination with the highest error between the column and row sum with a 
factor such as to remove this imbalance. Unlike RAS (and derivatives), it does not maintain 
the original column and row sum. It has shown in tests to remove remaining tiny 
infeasibilities after RAS stalls. The DSS algorithm is included in the GAMS code in the 
supplementary materials for this paper. 
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(1) 

 

 

(2) 

For the quadratic loss (HPD estimator), assuming identically normal distributed 
error terms, we get the following objective function, where  denotes the given 

data for the SAM entries, observed with errors: 

 

 

(3) 

For minimizing linear differences (LIN), we must define positive and negative 
errors err: 

 
 

(4) 

Of which the sum is minimized: 

 

 

(5) 

The cross-entropy framework (CE) introduces s exogenous support points  

for each entry, which jointly with the endogenous probabilities  define the 

estimates: 

 

 

(6) 

The entropy criterion maximizes the differences between the endogenous and 
given probabilities attached to the supports: 

 

 

(7) 

Assuming that all SAM entries have the same normally distributed uncorrelated 
errors, we can estimate their variance from the differences of the column and rows 
sum. The variance of a linear combination of uncorrelated variables is defined as: 

 

 
 

(8) 

With n as the number of rows (or columns) in the SAM, we sum up over 2 (n-1) 
variables as see from equation (9) below to define the observed imbalances in 
matching row and column sum. Each such imbalance provides an observation 
according to (8). The multipliers a in (9) are either unity (to add up the row sum), 
minus unity (to subtract the column sum) or zero for the diagonal elements. The 
SAM delivers a sample of n draws of the above variance which are the observed 
differences between the column and row sums. We thus get an estimate (we don’t 
need to correct for a biased estimate for the mean here as we know by definition 
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that the expected mean of the column and row sums is zero in our case with 
constructed SAMs): 

 

 

(9) 

 
The empirical results suggest that both the HPD and the CE case will recover 
closely the true errors over many draws, independent from the assumed equal a-
priori variance of the error terms. The information from equation (9) is hence not 
needed. 

 For the HPD case, this can be seen directly from the objective function (3), as 
weighting all terms with a uniform factor is irrelevant for the optimum. For the 
CE case, the same holds. That becomes obvious if we subtract the expected mean 
from all supports in (6): 

 

 

(10) 

The term  is zero by construction as supports are defined 

such that the expected mean is equal to the observed SAM entry . The terms 

 are derived from the assumed variance times and the elements of 

the vectors [-3;-1,5;0;+1,5;+3]. Multiplying all elements of this vector by the same 
non-zero scalar will keep (6) feasible for the current estimates  at current 

estimated probabilities . This holds as long as the resulting spread of the support 

is large enough to cover the current estimate. The same is true if the multipliers 
underlying the supports are defined relative to the observed SAM entries and, 
equivalently for the quadratic loss case, if each squared error term is weighted 
with the observed entry. Under identically distributed absolute or relative normal 
error terms and matching assumptions, CE and HPD should hence provide good 
estimators of the variance. 

As mentioned above, the RAS converges towards , and 

therefore, like the linear loss approach, cannot be expected to recover the true 
errors in this application. 

4.2 Results 

Table 1 below compares the mean absolute error, the variance, the skewness 
and mean absolute skewness, as well as the time needed to find a solution in 
average over the draws. The mean error will be zero by construction as the column 
and row sums are fixed based on the “true” SAM entries. We therefore compare 
mean absolute deviations, only. The most striking finding is that differences 
between the HPD and the Cross-Entropy Approach for the metrics are very small, 
probably in the range of the solver accuracies. Both slightly underestimate the true 
variance of the error term. This reflects that the row sums comprise additional 
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information on the true entries. Minimizing absolute differences (LIN) 
overestimates the variance by around 50% and leads to considerably higher 
skewness. Interestingly, the RAS solution is quite similar to the linear loss one. 

Under both the HPD and the CE estimator, the penalty for a deviation from an 
observed SAM entry increases over-proportional in the difference between the 
observed and the estimate, in opposite to linear loss. A linear loss approach must 
hence overestimate the variance if the true distribution is normally distributed. 
This also implies that HPD and CE estimators are more sensitive to outliers in the 
data set. 

The three penalty functions assess different variances of the error terms equally 
well. We do not introduce non-negativity conditions for the SAM entries. The 
assumed error term distributions can introduce a mix of positive and negative raw 
data entries, while the “true” entries are all positive. For moderate variances of the 
error term up to 0.5, differences between estimators are quite small which mirrors 
the comments of Round (2003) cited above. If no information on the distribution 
of the error terms is known, flexibility, accuracy and speed might therefore be 
metrics which are of key interest for the user, points picked up in the empirical 
dis-aggregation application in the next chapter. 

CONOPT4 found for all draws and all constrained optimization frameworks 
(LIN, HPD, CE) an optimal solution subject to its default tolerances which leaves 
computing time as a further criterion. The CE approach required, on average, 200-
400 times longer compared to the HPD approach. A first probable reason is the 
additionally equations and variables required in the CE approach. Second, in the 
linear and quadratic model, the Hessian is either zero or fixed which renders the 
solution process for the gradient based solver CONOPT4 easier compared to the 
logarithms found in the entropy penalty function.6 Solving times for the quadratic 
(HPD) and linear (LIN) programming solution are not impacted significantly by 
the variance of the errors. Conversely, the solution time increases with larger 
variances under the CE framework. As noted above, a fair comparison of 
computing times of RAS against the other algorithm would require the RAS 
programmed in a computer language such as FORTRAN, as GAMS is not very 
efficient for the explicit loop structures required in RAS. The GAMS code of RAS 
therefore beats, on average, only the speed of the CE framework. 

 
6 Golan and Vogel (2000) construct the Lagrangian of a primal CE SAM balancing 
problem, and after some manual substitutions, find a rather simple unconstrained 
optimization problem which solves very fast. Their approach however treats the 
expenditure shares of each SAM column as a probability space and assumes a logistic 
distribution of the error terms. Given these differences, this approach is not covered in 
here. 



Journal of Global Economic Analysis, Volume 6 (2021), No. 1, pp.  34-81. 

 
 

 47 

Table 1. Key metrics for the three penalty functions under a Monte Carlo experiments to 
balance matrices with known error terms. 

  Mean 
error 

Mean 
abs. 
error 

Mean 
variance 

Mean 
skewness 

Abs. 
mean 

skewness 

Mean 
solve 
time  
[sec] 

0.1 

Obs <E-06 0.251 0.099 -0.002 0.091 - 
HPD <E-15 0.243 0.093 -0.004 0.065 0.082 

LIN <E-15 0.288 0.149 -0.099 0.410 0.077 

CE <E-12 0.243 0.093 -0.004 0.065 2.869 

RAS <E-13 0.287 0.158 0.108 0.406 0.724 

0.5  

Obs 0,005 0.565 0.502 0.025 0.101  

HPD <E-15 0.547 0.470 0.000 0.065 0.032 

LIN <E-16 0.631 0.755 -0.030 0.434 0.030 

CE <E-12 0.547 0.470 0.000 0.065 2.707 

RAS <E-13 0.640 0.770 0.006 0.355 0.628 

1  

Obs 0,002 0.800 1.004 0.010 0.105 - 
HPD <E-15 0.774 0.938 0.001 0.072 0.034 
LIN <E-15 0.903 1.512 -0.027 0.487 0.029 
CE <E-11 0.774 0.938 0.001 0.072 3.015 

RAS <E-14 0.910 1.578 -0.026 0.431 0.597 

2  

Obs -0,004 1.126 2.000 -0.004 0.095 - 
HPD <E-16 1.090 1.871 0.007 0.056 0.034 
LIN <E-14 1.269 3.283 0.199 0.495 0.021 
CE <E-12 1.090 1.872 0.007 0.056 5.406 

RAS <E-13 1.282 3.132 0.133 0.395 1.029 

5  

Obs -0,005 1.783 4.987 -0.010 0.105 - 
HPD <E-16 1.724 4.664 -0.008 0.070 0.035 
LIN <E-15 2.008 8.179 0.043 0.411 0.022 
CE <E-15 1.726 4.675 -0.008 0.070 9.316 

RAS <E-13 2.013 7.636 0.057 0.398 0.807 

Notes: The true error terms are distributed n~(0,0.1/0.5/1/2/5). Results refer to a 30x30 matrix with 
original entries drawn with log(n~(0,3), cut off at 1+E8 and 1E-8 and then balanced with RAS 
before errors are added. 
 
Source: Author calculations. 

 
    We repeated the Monte-Carlo exercise for the 20x20 and 40x40 sized matrices. 
Estimated moments (not reported here) were similar to the ones found for the 
30x30 case. Solution time reacts exponential to problem size for the CE framework, 
a finding confirmed for the dis-aggregation application below. CE requires under 
the largest variance of the error terms 2.3 seconds for the 20x20 case, 9.3 seconds 
for the 30x30 case and 20 seconds for the 40x40 case. Increasing time to solve larger 
problems does not matter much in this example for the linear or quadratic case 
where solution times for the 40x40 case are below 0.1 seconds. 
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Table 2. Key metrics for the three penalty functions under a Monte Carlo experiments to 

balance matrices with known error terms, sign preserving. 

  Mean 
error 

Mean 
abs. 
error 

Mean 
variance 

Mean 
skewness 

Abs. 
mean 

skewness 

Mean 
solve 
time  
[sec] 

0.1a 

Obs 0.0004 0.221 0.084 0.373 0.373 - 
HPD <E-15 0.207 0.075 0.001 0.073 0.079 
LIN <E-15 0.253 0.147 -1.634 1.640 0.105 
CE <E-12 0.207 0.075 0.001 0.073 2.806 

RAS <E-13 0.263 0.165 -0.715 1.189 0.820 
0.5a Obs 0.012 0.473 0.400 0.490 0.490 - 

HPD <E-15 0.434 0.344 -0.024 0.080 0.074 
LIN <E-15 0.550 0.754 -2.078 2.078 0.068 
CE <E-12 0.434 0.344 -0.024 0.080 3.285 

RAS <E-13 0.572 0.773 -1.024 1.316 0.714 
1a Obs 0.142 0.651 0.773 0.544 0.544 - 

HPD <E-15 0.594 0.660 -0.031 0.094 0.065 
LIN <E-15 0.757 1.453 -2.172 2.172 0.055 
CE <E-12 0.594 0.660 -0.031 0.094 3.766 

RAS 0.002 0.784 1.554 -1.096 1.341 0.919 
2 a Obs 0.226 0.907 1.532 0.622 0.622 - 

HPD <E-16 0.812 1.273 -0.034 0.089 0.061 
LIN <E-16 1.050 2.899 -2.340 2.346 0.054 
CE <-E10 0.812 1.273 -0.034 0.089 6.101 

RAS <-E13 1.118 3.439 -1.140 1.678 0.650 
5 a Obs 0.407 1.383 3.653 0.742 0.742 - 

HPD <E-15 1.206 2.922 -0.051 0.094 0.086 
LIN <E-15 1.605 7.256 -2.532 2.532 0.073 
CE <E-11 1.209 2.936 -0.056 0.094 13.423 

RAS 0,004 1,700 8,459 -1,237 1,829 0,761 
Notes: a The original error terms are distributed n~(0,0,1/0,5/1/2/5) in the application above, the 
resulting targets are cut off a zero. Results refer to a 30x30 matrix with original entries drawn with 
log(n~(0,3), cut off at 1+E8 and 1E-8 and then balanced with RAS before errors are added. 

Source: Author calculations. 

The Monte-Carlo approach described above is not sign preserving. While the 
original drawn SAM entries are strictly positive, adding errors can generate 
negative targets. This is so far not corrected. We therefore repeat the exercise, but 
now cut the distribution of the targets at zero by setting entries to zero which 
become negative after adding the error term. The resulting error distribution is no 
longer a uniform normal as the truncation point depends both on the original entry 
and the drawn error term. The number of truncated items will grow for larger 
variances of the error terms. Results for this case with non-negative entries only 
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are reported in Table 2. This second Monte-Carlo exercise sheds further light on 
the behaviour of the solvers. It is reassuring to see that the HPD and CE 
frameworks still deliver good variance estimates. 

 Imposing a lower limit of zero on disturbed SAM entries reduces the true 
variance of the error term. This additional information given to the solver that all 
SAM entries are positive by definition does however not improve the variance 
estimation. For a variance of unity, the HPD and CE frameworks produce 
estimates of the variance around 0.93, i.e. an error of around 7% in the first Monte-
Carlo exercise. For the truncated case, the true variance is around 0.77 and the 
estimate at 0.66, a larger relative error. The true errors are now also skewed; this 
skewness is underestimated by the HPD and CE frameworks. The errors in the 
estimated variance for the linear loss penalty and the RAS which are not informed 
by the shape of the distribution remain moderate if we don’t add quite large errors.  

 What are summary findings from these exercises? For smaller data balancing 
applications such as typical for single country work, computational aspects can be 
probably neglected as all approaches solve here fast enough and robust. 
Furthermore, only tiny differences in results, if at all, between using a HPD or CE 
approach can be expected when assuming normality of the errors. Even more 
important, these approaches are insensitive if the assumed standard errors of all 
items are changed by the same factor. CE is however more flexible as it allows 
approximating also other distributions. Accordingly, existing computer codes 
based on these approaches can be used with confidence, while for newly 
developed ones, the easy to program quadratic loss approach might be the 
preferred choice. 

5. An empirical example application 

5.1 Dis-aggregation the global GTAP Data Base 

We now turn our attention to dis-aggregating all data relating to some 
production sectors and their outputs in a global SAM with multiple regions, a 
process often termed “SAM splitting”. As a preparatory step, the data driver of 
CGEBox (Britz and van der Mensbrugghe 2018) filters out small values from the 
GTAP Data Base. The concept and code for filtering was developed based on code 
written by Dr. Thomas Rutherford for an earlier GTAPinGAMS version 
(Rutherford 1998).7 It applies HPD approaches to re-balance the global data 

 
7 Lanz and Rutherford (2016) do not longer use a SAM balancing approach based on 
constrained optimization as part their filter step: “Removing small entries from the 
dataset implies that the resulting filtered dataset no longer represent a micro-consistent 
matrix. However, unlike earlier versions of gtapingams, we do not use a nonlinear 
optimization framework to rebalance the data. Instead, filter.gms moves imbalances 
resulting from omitted coefficients into either factor supplies or investment demand 
depending on the sign of imbalance which appears following filtering.” 
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afterwards, using linearly constrained quadratic programming. Lanz and 
Rutherford (2016) and Britz and van der Mensbrugghe (2016) discuss filtering in 
some detail such that we depict here briefly only some differences to dis-
aggregation exercises (see also Table ). Filtering in CGEBox balances each regional 
SAM in the global framework independently at fixed bi-lateral trade. That renders 
the individual balancing problems relatively small. Interesting features of the 
filtering step comprise, first, separate controls for macro totals such as total Gross 
Value Added which are not column sums in the SAM. Second, cost, expenditure 
and revenue shares are compared to the desired relative filter tolerance to flag such 
SAM cells for deletion which refer to small shares. These cells are treated 
differently to produce a sparse global SAM, but are not fixed exogenously to zero 
to avoid feasibility problems. Third, the filter balancing problem also comprises 
inequalities, for instance, to ensure that minimum value added cost shares are 
maintained. 

Compared to rebalancing a single country SAM, as done during filtering, global 
multi-regional dis-aggregation problems can get much larger.8 They balance 
simultaneously all new entries in the global data set, including production, 
intermediate and factor use, bi-lateral trade, domestic and import demand of the 
agents, and related taxes. Such a “split” exercise must ensure that all newly 
introduced more detailed data entries exhaust the related original ones. To give an 
example, splitting up a single sector at full detail of the GTAP V10 data base to 
two new ones implies for intermediate demand alone that 4 entries for up to 141 
regions and 65 products need to be dis-aggregated; these entries relate to domestic 
and import demand and relates tax revenues. This results in up to 141x65x4 = 9,165 
exhaustion conditions to consider and up to 18,330 cells to estimate. Such splitting 
exercises thus constitute an interesting field to test different balancing approaches. 

The development of the GTAP-Power (Peters 2016) and GTAP-Water (Haqiqi 
et al., 2016) Data Bases provide examples of such exercises. Peters (2016) reports 
in detail his stepwise procedure to split-up data relating to the production of 
electricity in the GTAP data base into different new sectors. At its core, it consists 
of a sequence of smaller CE estimators realized in GAMS where costs shares are 
treated equivalent to probabilities (see also Mc Dougall 1999, Peters and Hertel 
2016). Haqiqi et al. (2016) instead draw on SplitCom (Horridge 2005), a tool 
realized in GEMPACK to dis-aggregate a GTAP data base to further detail. 
Horridge (2005) details for SplitCom “for each constraint, there is a multiplicative 
scale factor chosen to satisfy that constraint. Each new cell is multiplied (or 
divided) by 2 or 3 such scale factors, corresponding to the constraint equations in 
which that cell appears”, and in a related footnote “According to your taste, you 

 
8 Details on the split approach can be found in the chapter on “Rebalancing” of the CGEBox 
documentation (Britz 2016) 
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can think of this as either a RAS or as a minimum-entropy problem”. Sequential 
updating of the scaling factors let the process converge. 

RAS cannot be applied to the dis-aggregation problem below due to inequality 
constraints and bounds on the estimates. We test the CE, quadratic and linear loss 
approaches by considering two examples, using the GTAP 9 Data Base as the data 
set to dis-aggregate. The first example splits the other food processing activity 
(ofd) and product from the GTAP Data Base to two activities/products, one 
producing intermediates for animal processes, i.e. feed concentrates, and the other 
(mostly) outputs relating to food use, either for intermediate and final use. The 
second example, in addition to splitting other food processing as in the first one, 
disaggregates the oil seeds (osd) sector to olives, soy beans, palm oil fruits, rape-
seed, other oilseeds, olive oil, palm oil, and the vegetable oil (vol) sector to soybean 
cake, soybean oil, rape seed cake, rape seed oil, other vegetable oils and cakes, 
adding 13 activities and commodities. For later simulations, soybean and rape 
crushing become two multi-output activities with produce the related cake and 
oil. Split factors are derived from the FABIO MRIO (Bruckner et al., 2019).  

By modifying the number of regions and the sectoral details in the GTAP Data 
Base to dis-aggregate, as well as the number of new sectors and related 
commodities introduced, differently detailed split problems are generated. All 
data sets to split comprise the full activity and product detail of the GTAP Data 
Base for primary agriculture and food processing. 

The split-balancing problem has multiple interesting features which are 
relevant, for instance, also for input-output (IO) table balancing. First, SAM entries 
relating to agri-food sectors tend to be small relative to the total economy. Dis-
aggregating them runs the risk of introducing quite small cost or expenditure 
shares. To avoid this issue, we explicitly control for sparsity. This is achieved by 
calculating first the a-priori SAM entries from the split factors, treating those 
separately which fall under a very small absolute lower limit (<0.1 USD, i.e. 10 
cents). For such extremely small entries, the a-priori entry will be set to a larger 
negative value in combination with a bound at zero. As a result, the estimator will 
pull such small entries to zero, as long as this does not prevent feasibility or leads 
to large relative deviations for other entries. That idea is based on a similar 
approach in the original filter program by Rutherford (1998). 

Moreover, we introduce inequalities in the data balancing problem which 
define maximum and minimum cost shares derived from the aggregate SAM cell 
to split. This ensures that the absolute cut-offs at 0.1 USD cannot generate 
implausible cost shares, such as producing crops without using land. Removing 
other small shares, for instance, in final demand, export or import, which relate to 
items in the range of 0.1 USD is not considered critical. 

Similarly, we control for maximum and minimum factor tax cost shares to 
avoid tax rates which could prevent model calibration or provoke problems in 
simulations. For instance, we exclude subsidy revenues for a factor received by an 
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activity that exceed a certain share of related payments at market prices. Without 
such additional restrictions, implausible cost shares or other relations can result 
from the interaction of the user provided split factors, exhaustion conditions and 
the chosen penalty function. User provided split factors are usually not fully 
consistent, otherwise, the application of RAS or a constrained optimization 
framework would not be necessary. One reason for inconsistent split factors in our 
empirical application is that FABIO is derived from FAO data which uses the 
concept of “Primary Product Equivalents” where use and trade volumes consider 
also demand for derived products, reconverted to primary ones based on physical 
conversion factors.9 Secondly, FABIO only provides split information on 
intermediate input use of agri-food products by agri-food sectors, but not for other 
intermediate goods and primary factors with the exemption of land. Missing 
entries therefore draw on proportionality assumptions. 

Such incomplete split information or definitional differences are typical 
problems in data fusion which can result in a-priori data provoking implausible 
relations in final data sets. The constrained optimization setup based on a NLP, 
QP or LP framework allows the use of inequalities (including bounds on balanced 
results) to explicitly control implausible data ranges or relations. This holds 
independent of the penalty function used. Examples were discussed above. 

Table 3. Comparison of the filter and split algorithms. 

 Filter Split 

Proposed 
solver 

CPLEXD a CPLEXD a 

Applied to Different detailed 
aggregated data sets 
from GTAPAgg 
(including GTAP-Power, 
GTAP-Water) 

Outcome of filter step  
Differently detailed splits  
(for instance. agri-food, chemicals) 

Methodology HPD Linear loss  
(HPD and CE as alternatives for testing, 
requires developer access) 

Framework Single model region 
balancing at fixed trade 
flows, all data in current 
region estimated 
simultaneously 

Global, all data entries referring to new 
products/activities estimated 
simultaneously 

(Continued) 

 

 
9 It is planned to improve here by using trade flows and tariff information from TASTE. 
This requires mapping HS6 codes to the FABIO items. 
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Table 3. Comparison of the filter and split algorithms (Continued). 

 Filter Split 

Algorithmic 
detail 

Sequential: gradually 
remove small entries, fix 
trade flows, balance 
single region 
Grid solve in parallel** 
Linear pre-solves if 
CONOPT4 is used 

Repeated solves at relaxed feasibility 
tolerances in case of infeasibilities 

Data input and treatment Existing balanced global 
SAM 
(+ auxiliary data) 
Market balances define 
constraints 
Specific controls for 
totals (trade, GDP etc.) 
Sparsity handling 

Existing filtered global SAM (+ auxiliary 
data), skimmed of small entries (Filter 
step) 
Various exhausting /market balances / 
plausibility bounds define constraints 
Sparsity handling 

Post-solve Linear solve at tightly 
fixed estimates 
Followed by specific G- 

RAS + DSS 

Specific G-RAS + DSS 

Notes: a the solver (CPLEXD, GUROBI, CONOPT4) can be chosen by user, ** can be switched off by 
user. 

5.2 Technical setup, metrics and sensitivity analysis 

The process tested in here involves (see Figure 1) several steps which are 
detailed next. They comprise as major blocks the preparation of the input data for 
the dis-aggregation (conversion of the GTAP Data Base to GAMS format, its 
aggregation by regions, sectors and factors, filtering out of small cost or revenue 
shares, construction of a SAM) and the dis-aggregation itself (split step). 
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Figure 1. Overview on data preparation steps. 

           Source: Authors. 

These different steps encompass the following sub-steps as indicated in Figure 1: 
 

1. Preparation of input data: 
a. Format conversion: Convert GTAP Data Bases in GEMPACK HAR format to 

GDX containers and re-organize them in GAMS parameters.  
b. Aggregation: The GTAP data can either be aggregated to the desired region, 

sector and factor detail outside of GAMS using GTAPAgg (Horrigde 2015), 
or the user can define the aggregation rules with a Graphical User Interface 
(GUI) control in CGEBox and perform the aggregation in GAMS (as depicted 
in the figure). 

c. Filtering: use the chosen solver (here always CPLEDX) with a HPD approach 
to re-balance the data for the model regions sequentially, after small SAM 
entries had been flagged for deletion at fixed international transactions. 
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(HAR format)
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Rebalancing is necessary even without filtering as data sets in HAR format 
are stored in single precision and regularly considered as unbalanced by 
solvers in GAMS which use double-precision arithmetic. Different filtering 
thresholds are used in here, including a 0.0001% case which should mostly 
remove tiny infeasibilities resulting from moving from single to double 
precision. SAMs for all model regions are subject to a final balancing solve as 
a LP problem. It uses tight bounds around the balanced entries resulting from 
the previous HPD step and thus aims at improved accuracy, only. This 
additional solve should guarantee a feasible solution for subsequent dis-
aggregation problems given the feasibility tolerances of the solvers.10 

d. SAM Construction: The different parameters are combined into a global 
SAM. It is complemented by some auxiliary data, providing, for instance, 
domestic and import demand shares and related taxes by agent. On demand, 
further data (AEZ land use data, non-CO2 emissions relevant for Climate 
Change, air emissions, from GTAP-MRIO or GMIG) can be added. They will 
be aggregated in GAMS to the desired regional and sector detail. 

e. RAS: Application of a specialized RAS routine in GAMS to further improve 
accuracy. It balances the global SAM at fixed bi-lateral trade flows, starting 
with a modified Generalized RAS which works with positive and negative 
row/column sums. If the Generalized RAS stalls, it switches to a DSS 
approach. The maximal absolute balancing error is typically smaller 5.E-6 
USD and the sum of imbalances not larger than 1.E-4 USD after that step. The 
three sub-steps a)-d) require less than 30 seconds for the tested cases.  

 
The resulting global SAM plus related auxiliary data is the input to any further 

additional data extension work, such as dis-aggregation of sectors/products or 
introducing sub-national detail. Without such extensions, this output provides the 
benchmark point for different variants of multi-regional global CGEs in CGEBox. 
All equations in CGEBox are written in levels. Balancing errors in the data set 
exceeding the feasibility tolerance of the solver will show up as infeasibilities in 
the benchmark solution test of the CGE model. This can confuse a model user who 
might relate these infeasibilities instead to conceptual flaws in setting up the 
model. This is a major reason to add the RAS step. Moreover, it provides an 
independent check for the correct construction of the global SAM from the various 
matrices which jointly constitute the GTAP Data Base. 

 
 

 
10 This can however not be strictly guaranteed as the solvers scale the balancing problems 
such that they might declared the scaled problem still infeasible. We run into some of such 
cases in our tests with the GUROBI solver. Generally, ensuring a high accuracy in all 
(intermediate) steps prevents error propagation along the processing chain. 
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2. Dis-aggregation: 
a. Split factor generation: A-priori estimates for the different SAM cells are 

constructed as follows. Production values are split according to physical 
production multiplied with the global average per unit f.o.b. prices, both 
reported in FABIO. Land use in hectares by the activities is used to define 
shares of the split-up activities on primary factor returns to land. 
Intermediate demand by newly introduced activities for products covered by 
FABIO is based on the physical input use reported by FABIO, again 
multiplied with f.o.b. prices. Similarly, final demand estimates draw on the 
food demand reported by FABIO, while other demand positions consider all 
other non-intermediate demand reported by FABIO.  

b. Balancing: Use the chosen solver/penalty function combination to find a 
solution to the split problem. In case of reported infeasibilities, widen slacks 
and switch to option files with more relaxed feasibility tolerances and re-
solve. 

c. RAS: Apply the RAS procedure again to improve accuracy. This also 
provides an independent check for the dis-aggregation framework. 

 
As the data preparation steps above are independent from the solver or 

approach used in the subsequent dis-aggregation step, all tests comparing 
approaches and/or solvers are run on the same input data. The reader might 
wonder why we first balance the global data set and afterwards dis-aggregate. 
First, during dis-aggregation, all SAM cells not related to the activities and 
products to dis-aggregate are fixed to reduce the problem size. Second, during 
filtering, bi-lateral trade entries are filtered first and next fixed which allows 
balancing each regional data set independently. This two-step approach is not 
feasible in the dis-aggregation step. Third, the dis-aggregation adds additional 
constraints which are not needed during filtering. 

The results are assessed based on the outcome of step 2.b and 2.c. Similar to its 
application after the filtering step, one might question why we apply the RAS 
procedure after solving the dis-aggregation problem with a constrained estimation 
framework. The reason is that applying the RAS on a global data set with tiny 
imbalances resulting from the (N)LP framework is typically quite fast and can 
improve accuracy further. The required update factors during the few RAS 
iterations are typically extremely small and should not matter for the previously 
optimized penalty function. Furthermore, in order to stabilize computations, the 
RAS procedure does not update very small SAM entries (i.e. those that are in 
absolute terms <0.1 USD). This also avoids that for such tiny transactions, small 
absolute changes imply large relative changes in cost and other shares. It should 
be mentioned that the RAS can require quite some time if the previous solve 
provoked higher imbalances such as in the range of 0.1 M USD. These cases are 
reported as “failed” below as the solver will not report an optimal solution if the 
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solver ends with infeasibilities of such magnitude. The final RAS step is especially 
useful if the solution process relaxed feasibility tolerances. 

The steps in the filter and dis-aggregation routine (see also Table  above) 
underline that in real-world applications to larger balancing problems, a 
combination of sequentially applied approaches might provide a compromise of 
the necessary control over the balancing outcome, speed and accuracy. For 
instance, during filtering, the first HPD solve ensures that larger relative 
deviations receive more weight, controls for sparsity, adds plausibility bounds 
and considers unknown row and column totals. But it will typically not provide 
the best accuracy. The follow-up linear solves and the final RAS are quite fast and 
improve accuracy further, but build on and stay very close to previous controlled 
outcome from the HPD solve. They also maintain sparsity. 

To assess the performance of the algorithms and solvers in these larger scale 
empirical applications, we look first at the achieved accuracy. We measure 
accuracy in absolute terms by looking at the largest differences between any SAM 
column and row sums. This is preferred over relative differences as CGE models 
simulate economic transactions which all have a common unit. Equally, CGEBox, 
the model using the data, is written in levels so that many equations directly relate 
to the original transactions in the SAM. The solver will check feasibility of these 
equations at the benchmark in absolute terms. Providing a high accuracy by 
keeping imbalances small is hence considered essential to avoid that 
benchmarking of the simulation model becomes infeasible. This is challenging for 
badly-scaled dis-aggregation problems where SAM entries and other items subject 
to splits are of quite different magnitudes. As noted above, we improve on the 
solvers’ solution by adding a specialized RAS procedure. Accordingly, we report 
here both the imbalances as left by the solvers and the ones after the RAS. Relative 
differences are however additionally reported when comparing results from 
different approaches and solvers. 

Secondly, we aim at measuring how different the results of the three candidate 
penalty functions are. Note here that we need a different approach from the 
Monte-Carlo experiment above as the “true” distribution of the errors is now 
unknown. These errors result from generating split factors from the FABIO MRIO 
which is balanced in physical terms and not consistent with the GTAP Data Base. 
The resulting split factors could even be biased, i.e. provoke a mean error different 
from zero. We can therefore not decide a-priori, for instance, if assuming normality 
makes sense and motivate from there a specific penalty function. Instead, for each 
data-set to dis-aggregate, we calculate for each of the additional SAM cells 
resulting from the split the average estimate over all tested combinations of solvers 
and algorithms. We then measure mean absolute and relative differences over all 
SAM cells against these averages, for each solver and algorithm combination. 
Thirdly, we report solution times, again for the solution of the process only, and 
in total including the additional RAS step. 
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To test the combination of different penalty functions and solvers, we start with 
GTAP Data Bases with different sectoral and regional detail (35x10, 47x10, 57x10, 
57x24). All are first filtered to thresholds of 0.01%, 0.001% or 0.0001%. Depending 
on the threshold, more or less small entries are removed from the GTAP Data 
Bases, leading to differently large data sets for the same number of model regions 
and sectors (see also Lanz and Rutherford, 2016). Larger thresholds not only 
reduce the problem size, but likely also the condition number of the SAM, 
decreasing the likelihood of numerical problems both during filtering and model 
solves. As the filter step rebalances the global data base as detailed above, this step 
also ensures feasibility. In case of the 0.0001% threshold, (almost) no data entry 
will be removed. Here, the filter step solely ensures that the global data set is 
balanced given the feasibility tolerances expected by the solvers. 

The combination of four differently detailed data base and the three filtering 
thresholds generates twelve data sets which differ in the number of non-zero SAM 
cells.11 This also implies that the resulting SAM dis-aggregation problems are 
differently sized. This allows for an informed view on how problem size impacts 
the performance of different solvers and penalty functions. Specifically, each data 
set is split using CPLEXD, GUROBI and CONOPT4 minimizing either relative 
absolute or relative differences, or using cross entropy with CONOPT4. 
Accordingly, each data set is subject to dis-aggregation seven times. For all penalty 
functions, we did not try to differentiate priorities across the SAM entries resulting 
from the split. This can be interpreted as assuming the same standard error for any 
newly introduced SAM cell. For the CE and HPD penalty functions, we assumed 
normally distributed error terms. The supports in the case of CE also introduce 
upper and lower bounds on the new SAM entries. To guarantee feasibility for all 
the data sets, we use a large a priori standard error in the CE case, resulting in 
large relative differences between the smallest and largest supports. 

5.3 Results for the dis-aggregation exercise 

GUROBI failed to find a feasible solution six times on the linear loss problem, 
and did not find a fully optimal solution on three quadratic problems. In such 
cases, declared as intermediate optimal, the solver stopped the optimization 
process before all Jacobian entries were smaller than the desired optimality 
tolerance. This can be due to stalling, i.e. a larger number of iterations without a 
change in the objective function, or by reaching the maximum time allowed. 
CPLEXD failed to find a fully optimal solution for all 24 quadratic loss problems. 
Similarly, CONOPT4 failed to find a fully optimal solution on seven CE problems. 

 
11 More correctly, we should speak of SAM cells and further auxiliary data as the split up 
of the total demand to imports and domestic sales for all demand positions must also be 
included in the dis-aggregation problem. The estimates of the import demand for a newly 
introduced product interact, inter alia, with the dis-aggregation of bi-lateral trade. 
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These results show that real world problems can be tricky to balance. We had to 
adjust some other solver settings in GUROBI as suggested by warning messages 
by this solver during trials. For all solvers, we used stricter feasibility tolerances 
different from the defaults which were step-wise relaxed in case the split problem 
was declared infeasible. 

Table  reports the best results for the different data sets, i.e. the minimal solving 
time and lowest imbalances for the newly generated SAM column-row 
combinations under any solver and balancing approach. The best solver often 
takes less time than the typically few RAS iterations to improve any remaining 
imbalances. However, adding the RAS variant pays off as it drives the maximum 
imbalances in the best case below 1.E-3 USD. It is typically impossible to find a 
combination of a solver and approach which dominates all others in all metrics. 
The dis-aggregation problem involving the oilseed and vegetable oil sectors is 
much more demanding compared to the single sector dis-aggregation of the other 
food processing sector. It not only increases considerably the problem size, but 
needs to consider strong relationships between the newly created SAM columns 
and rows. For instance, the new crushing activities, such as soybean crushing, use 
as major inputs the newly-introduced commodities. Still, in the best case even the 
largest split problem with >0.5 million non-zeros in the constraint matrix can be 
solved in around six seconds by the best solver. 

Table 4. Minimal times and imbalances for any solver / approach combination. 

Data 
set 

Split Filter 
tol. 

Time 
[seconds] 

Max. Imbalance 
[M USD] 

Sum of Imbalances 
[M USD]  

 
 

Solver Total Solver Total Solver Total 

35x10 ofd 0.0100% 0.078 1.55 2.00E-08 1.31E-10 2.07E-07 7.19E-10 

35x10 ofd 0.0010% 0.078 1.65 1.86E-09 1.60E-10 2.23E-08 6.64E-10 

35x10 ofd 0.0001% 0.062 2.00 2.33E-09 1.16E-10 2.55E-08 5.83E-10 

35x10 ofd/osd/vol 0.0100% 1.078 4.04 2.83E-08 1.89E-10 2.06E-07 1.37E-09 

35x10 ofd/osd/vol 0.0010% 1.046 6.88 9.31E-10 2.33E-10 1.81E-08 1.41E-09 

35x10 ofd/osd/vol 0.0001% 1.532 8.03 3.26E-09 1.16E-10 2.56E-08 1.24E-09 

47x10 ofd 0.0100% 0.141 4.03 3.73E-09 3.93E-10 6.01E-08 1.81E-09 

47x10 ofd 0.0010% 0.094 2.07 3.73E-09 1.16E-10 4.47E-08 9.53E-10 

47x10 ofd 0.0001% 0.219 3.92 1.86E-09 2.33E-10 4.28E-08 1.54E-09 

47x10 ofd/osd/vol 0.0100% 1.812 15.26 5.36E-09 5.82E-10 9.13E-08 4.89E-09 

47x10 ofd/osd/vol 0.0010% 1.719 5.01 3.73E-09 3.49E-10 4.68E-08 2.61E-09 

47x10 ofd/osd/vol 0.0001% 2.578 8.33 4.63E-09 2.33E-10 4.99E-08 2.40E-09 

57x10 ofd 0.0100% 0.094 2.22 2.79E-09 2.33E-10 4.68E-08 8.22E-10 

57x10 ofd 0.0010% 0.109 2.52 9.31E-10 1.16E-10 3.87E-08 8.54E-10 

57x10 ofd 0.0001% 0.125 3.26 6.05E-09 2.33E-10 5.41E-08 9.48E-10 

(Continued) 
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Table 4. Minimal times and imbalances for any solver / approach combination 

(Continued) 
Data 
set 

Split Filter 
tol. 

Time 
[seconds] 

Max. Imbalance 
[M USD] 

Sum of Imbalances 
[M USD] 

57x10 ofd/osd/vol 0.0100% 1.25 4.58 1.86E-09 2.33E-10 4.11E-08 2.22E-09 

57x10 ofd/osd/vol 0.0010% 1.75 6.57 5.59E-09 2.33E-10 4.85E-08 1.66E-09 

57x10 ofd/osd/vol 0.0001% 1.813 6.73 6.05E-09 2.33E-10 5.60E-08 2.07E-09 
57x24 ofd 0.0100% 0.25 7.93 1.63E-09 2.33E-10 4.88E-08 1.46E-09 

57x24 ofd 0.0010% 0.281 5.40 9.31E-10 2.33E-10 4.66E-08 1.77E-09 

57x24 ofd 0.0001% 0.375 10.09 5.59E-09 2.33E-10 7.15E-08 1.50E-09 

57x24 ofd/osd/vol 0.0100% 3.031 19.95 1.63E-09 3.49E-10 4.82E-08 2.76E-09 

57x24 ofd/osd/vol 0.0010% 5.266 20.75 2.33E-09 2.91E-10 5.37E-08 2.46E-09 

57x24 ofd/osd/vol 0.0001% 6.047 35.46 3.73E-09 3.01E-10 7.22E-08 2.36E-09 

35x10 ofd 0.0100% 0.078 1.55 2.00E-08 1.31E-10 2.07E-07 7.19E-10 

35x10 ofd 0.0010% 0.078 1.65 1.86E-09 1.60E-10 2.23E-08 6.64E-10 

35x10 ofd 0.0001% 0.062 2.00 2.33E-09 1.16E-10 2.55E-08 5.83E-10 

35x10 ofd/osd/vol 0.0100% 1.078 4.04 2.83E-08 1.89E-10 2.06E-07 1.37E-09 
35x10 ofd/osd/vol 0.0010% 1.046 6.88 9.31E-10 2.33E-10 1.81E-08 1.41E-09 

35x10 ofd/osd/vol 0.0001% 1.532 8.03 3.26E-09 1.16E-10 2.56E-08 1.24E-09 

47x10 ofd 0.0100% 0.141 4.03 3.73E-09 3.93E-10 6.01E-08 1.81E-09 

47x10 ofd 0.0010% 0.094 2.07 3.73E-09 1.16E-10 4.47E-08 9.53E-10 

47x10 ofd 0.0001% 0.219 3.92 1.86E-09 2.33E-10 4.28E-08 1.54E-09 

47x10 ofd/osd/vol 0.0100% 1.812 15.26 5.36E-09 5.82E-10 9.13E-08 4.89E-09 

47x10 ofd/osd/vol 0.0010% 1.719 5.01 3.73E-09 3.49E-10 4.68E-08 2.61E-09 

47x10 ofd/osd/vol 0.0001% 2.578 8.33 4.63E-09 2.33E-10 4.99E-08 2.40E-09 

57x10 ofd 0.0100% 0.094 2.22 2.79E-09 2.33E-10 4.68E-08 8.22E-10 

57x10 ofd 0.0010% 0.109 2.52 9.31E-10 1.16E-10 3.87E-08 8.54E-10 

57x10 ofd 0.0001% 0.125 3.26 6.05E-09 2.33E-10 5.41E-08 9.48E-10 

57x10 ofd/osd/vol 0.0100% 1.250 4.58 1.86E-09 2.33E-10 4.11E-08 2.22E-09 

57x10 ofd/osd/vol 0.0010% 1.750 6.57 5.59E-09 2.33E-10 4.85E-08 1.66E-09 

57x10 ofd/osd/vol 0.0001% 1.813 6.73 6.05E-09 2.33E-10 5.60E-08 2.07E-09 

57x24 ofd 0.0100% 0.250 7.93 1.63E-09 2.33E-10 4.88E-08 1.46E-09 

57x24 ofd 0.0010% 0.281 5.40 9.31E-10 2.33E-10 4.66E-08 1.77E-09 

57x24 ofd 0.0001% 0.375 10.09 5.59E-09 2.33E-10 7.15E-08 1.50E-09 

57x24 ofd+osd+vol 0.0100% 3.031 19.95 1.63E-09 3.49E-10 4.82E-08 2.76E-09 

57x24 ofd+osd+vol 0.0010% 5.266 20.75 2.33E-09 2.91E-10 5.37E-08 2.46E-09 

57x24 ofd+osd+vol 0.0001% 6.047 35.46 3.73E-09 3.01E-10 7.22E-08 2.36E-09 
mean   1.280 7.84 4.95E-09 2.41E-10 6.11E-08 1.71E-09 

Note: Mio USD is the unit underlying the SAMs problems and used by the solver to assess feasibility 
tolerances. 

Source: Author calculations. 
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As perhaps expected, the purely linear models solve fastest and also generate, in 
most cases, the smallest imbalances in the SAM (see Table ). Note that the 
percentages shown in the table can exceed 100% if several solver/algorithm 
combinations led to the very same best outcome. The table shows that the 
differences between the specialized solvers CLEPXD and GUORBI are limited, 
with CPLEXD performing on average better across the different metrics. 

Table 5. Percentage of cases where an algorithm / solver combination performed best. 

  Time 
[seconds] 

Max. Imbalance  Sum of Imbalances 

Algorithm Solver Solver Total Solver Total Solver Total 

LIN CPLEXD  58 58 71 21 54 25 

LIN GUROBI  13 21 63 8 33 4 

LIN CONOPT4   8 58 29 8 21 

QUA CPLEXD 25 13 4 13  8 

QUA GUROBI  4   13  17 

QUA CONOPT4    17  13 

CE CONOPT4   13 8 4 13 

Notes: Highest share, i.e. best solver/approach combination, marked in bold; Total: 
Solver followed by additional RAS. 

Source: Author calculations. 

Furthermore, the LP and QP solvers seem also to scale quite well as shown in 
Figure 2 below for the example of CPLEXD (red and blue dots). Increasing the 
problem size from 25,000 entries (around 8,000 variables) in the constraint matrix 
and objective to 585,000 (around 187,000 variables) drives up the solution time of 
CPLEXD from around 0.08 to 20 seconds for the linear loss problem (blue dots). 
This is an almost linear increase. The solution times for CONOPT4 (green squares) 
on the linear problem are quite similar to CPLEXD up to around 40,000 non-zeros, 
afterwards, the gap widens. On the largest problem, CONOPT4 almost took an 
hour to solve, as suggested by the larger slope of the exponential regression line 
for CONOPT4, LIN compared to CPLEXD, LIN.  

CPLEXD required somewhat longer (red dots) for the quadratic compared to 
the linear loss approach (blue dots) on the same problem; but differences vanish 
with larger problem sizes. This specialized LP/QCP solver scales equally well for 
the quadratic problem, the slope of quadratic trend line is quite similar to the linear 
case. However, it found sub-optimal solutions only for the quadratic loss 
problems. 

Compared to solving the linear loss problem, CONOPT4 behaves quite 
differently on the CE (turquoise squares) and quadratic loss (purples squares) 
ones. First, the time required is considerably larger; for smaller problem sizes, the 
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CE problems takes also longer than the quadratic loss problem. The quadratic 
trend line is also steeper than the CPLEXD trend line. 

 

 

Figure 2. Relation between solution time in seconds and problem size. 

                 Note: EXPON. refers to a regression of log(seconds) on problem size. 

           Source: Author calculations from simulation experiments. 

One might reduce the time needed, for instance, by lowering the optimality 
tolerance in CONOPT4 below what is used in here. This might make the results 
more comparable to CPLEXD which ended with sub-optimal solutions. We used 
a maximal solving time depending on problem size. For the largest problem, this 
allowed almost one hour for the solver. If this limit is reached and a feasible solution 
is not found, the solver will restart. Otherwise, it will declare the solution as not 
fully optimal. For the largest CE problem, this resulted in over two hours of 
solution time without finding a fully optimal solution. The CE problem requires 
less solution times in some of the largest problems compared to the quadratic loss 
one. This might reflect the required high spread of the supports mentioned above. 
It could flatten the objective function compared to the quadratic case such that the 
solver stops the search for a better solution earlier when the largest Jacobian entry 
reaches the optimality tolerance. In contrast, the solve time for the linear loss 
version using CONOPT4 is less than 10 seconds for moderately sized problems. 

Figure 2 illustrates the relationship between problem size, measured as the 
number of non-zeros in the linear version of the problem, and solution time. The 
larger problems considered exceed the dimension of a typical single country SAM 
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balancing exercise. Compared to the HPD case, the linear loss and entropy 
approaches require additional equations and variables (see section 4.1) which 
drive up the number of non-zeros. For the smallest model considered, that means 
an increase from 18,000 to 25,000 (linear loss) or 42,000 (CE) non-zeros, for the 
largest one, an increase from around 421,000 to 585,000 (linear loss) or 910,000 (CE) 
non-zeros. We should mention here that GAMS allows multiple balancing 
problems to be solved in parallel on a grid which can reduce the overall time to 
balance, for example, multiple country SAMs. For the empirical application 
considered here, this option was not used as we balanced one global data set. The 
parallel processing options is, however, applied in the filter program of CGEBox 
to balance data for different model regions in parallel. 

As already illustrated in Figure 2,  shows that the specialized LP and QCP 
solvers CPLEXD and GUROBI solve faster than CONOPT4 on average over the 
different experiments. Some combinations come very close to always performing 
best (such as LIN GUROBI in case of the “Sum of Imbalances” with a 0.01), but 
none reaches the 0.0 value required to always dominate any other one. Relative 
solving time differences between CPLEXD and GUROBI are negligible given an 
average best time of 0.14 seconds. For the linear case, CONOPT4 takes on average 
around 65 times longer compared to the specialized solvers. The difference shrinks 
to about factor 14 once the follow-up improvement step with the RAS is 
considered. All quadratic cases solve slower than the linear ones. Even the 
specialized QCP solvers CPLEXD and GUROBI need around 2-9 times longer than 
the linear solvers. The quadratic loss case in CONOPT4 takes 200 times longer 
compared to the fastest solver on the linear case, with the subsequent RAS step 
also requiring more computing time on average, indicating that the remaining 
imbalances were larger. 

Table 6. Average relative difference to best combination of solvers and algorithms. 

  Time 
[seconds] 

Max. Imbalance  Sum of Imbalances 

Algorithm Solver Solver Total Solver Total Solver Total 

LIN CPLEXD  0.91 0.36 0.51 0.29 0.09 0.15 

LIN GUROBI  1.64 0.33 0.08 0.76 0.01 0.30 

LIN CONOPT4 65.06 13.84 2.73 1.96 1.41 0.93 

QUA CPLEXD 0.84 2.04 69.80 513 195 9467 

QUA GUROBI 4.32 8.47 2.9E7 8.8E7 1.8E8 4.2E7 

QUA CONOPT4 198 23.55 357 5.46 5.00 65.92 

CE CONOPT4 514 92.52 32 4.03 6.435 14.35 

Notes: The table displays relative differences, not percentages. Hence, a value of 0.14      
means 14% more; a value of 2,000 means 2,000 times more. Total time includes the   
additional RAS step. 

Source: Author calculations from simulation experiments. 
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Indeed, the largest imbalance for the quadratic loss case using CONOPT4 is in 

average 350 times higher compared to the best linear case, and around 5 times 
higher when also considering the subsequent RAS. The average loss in accuracy 
for CE is somewhat lower. With average imbalances for the best case – typical the 
linear one - in the range of 1.E-4 USD, these losses in accuracy for CONOPT4 
probably do not matter for subsequent benchmarking. The accuracy achieved by 
CPLEDX on the quadratic problem is of a similar magnitude as for CONOPT4. The 
very large differences for GUROBI reflect some cases where it declared a problem 
optimal despite quite large primal unscaled infeasibilities. 

The CE and quadratic loss approaches in CONOPT4 solve, respectively, 500 
and 200 times slower compared to a pure linear problem cracked by a specialized 
solver, even taken the final RAS step into account, the factor is around 25. Figure 
2 suggests that these relative differences do not depend much on problem size. 
The CE and HPD approach provoke different imbalances with the same solver 
CONOPT4. Different scaling factors from the additional variables and constraints 
used in CE might be the reason. 

Rutherford and Schreiber (2019) propose a piecewise hybrid approach which 
adds a log term to penalize values which go to zero. Similar to what we find, 
switching from quadratic loss based on CPLEX to the piecewise hybrid approach 
using CONOPT increased the required time to solve dramatically. In the 
application by Rutherford and Schreiber (2019), the CE approach solved even 
slower than the hybrid approach. 

But do solutions really differ across the penalty functions and solvers? We 
measure differences for the solver/algorithm combination against the mean of all 
such solutions (see Table ). The average will consider two groups of three linear 
(solved with all three solvers) and four non-linear cases (CE solved with 
CONOPT4, QUA solved with all three solvers). The CE and quadratic loss case 
can be assumed to give similar results following our Monte-Carlo exercise, such 
that somewhat larger differences might be expected between the linear and non-
linear cases. Interestingly, we find that differences between solvers used for the 
very same problem can be higher than the differences for the same solver on 
different penalty functions. For example, the mean relative differences for 
CONOPT4 and CPLEXD for the quadratic loss case are larger than differences for 
CONOPT4 across the different penalty functions. The average size of the newly 
generated SAM entries is around 5,000 M USD for the smallest problem and 1,200 
M USD for the largest one. These differences reflect first the higher detail of the 
data base to dis-aggregate. Second, in the larger problems, oilseeds and vegetable 
oils and cakes are dis-aggregated to multiple new sectors/products, and not only 
the other food processing sector to two new ones. 
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Table 7. Differences compared to mean over solvers and algorithms. 

Algorithm Solver Max 
relative 

Max 
absolute 

Mean 
absolute 

Mean relative 

all > 1a > 10 a  > 100 a 

LIN CPLEXD  11.35% 25,025 68 16.71% 7.40% 7.42% 7.79% 

LIN GUROBI  18.96% 41,927 186 17.17% 9.91% 10.64% 12.05% 

LIN CONOPT4 13.67% 35,006 77 16.89% 7.73% 7.90% 8.68% 

QUA CPLEXD 7.69% 12,297 41 34.45% 6.19% 5.89% 5.85% 

QUA GUROBI 13.71% 34,690 61 27.35% 10.26% 9.16% 9.32% 

QUA CONOPT4 5.38% 14,012 41 15.60% 6.13% 5.87% 5.85% 

CE CONOPT4 13.80% 30,499 89 35.80% 18.22% 17.62% 16.71% 

Notes: a Differences are reported only for items larger than 1/10/100 M USD; absolute 
differences in M USD. 

Source: Author calculations from simulation experiments. 

   Even more interesting are the mean absolute differences across all approaches. 
For the nonlinear-cases, i.e. quadratic loss and CE, they are in the range of 40-90 
M USD, a magnitude of probably limited overall importance given the size of the 
model regions’ economy. We also find that excluding small SAM entries below 1 
M USD reduces the relative differences. The relative differences seem to stay 
rather stable if that threshold for excluding smaller values is increased to 10 or 
100 M USD. It seems that the solutions of CPLEXD and CONOPT4 are quite 
similar across the linear and quadratic cases for newly introduced larger SAM 
cells. Some of the differences might be affected by outliers where a solver could 
find a sub-optimal solution only or declared a model feasible despite larger 
primal infeasibilities. Interesting to note are the differences between the CE and 
quadratic loss cases compared to the controlled Monte-Carlo experiment. We 
assume that the large spread needed for the supports could be a reason. It might 
flatten the objective function too much – a point discussed above for solving 
times. 

As little is typical known in detail about reporting and measuring errors in 
SAM balancing or dis-aggregation, we see little advantages in being strictly based 
on some statistical concept such as HPD or CE which require a-priori assumptions 
on the distribution of the error terms. The findings here that differences across 
approaches are limited might suggest minimizing weighted absolute differences 
with a careful consideration of choosing the weights, especially with access to the 
specialized solvers. This combines a high accuracy with extremely fast solving 
times. Otherwise, using a quadratic loss penalty with CPLEDX is a quite good 
alternative. The higher solution time for the quadratic loss compared to the linear 
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one do not matter much for moderately sized problem while the accuracy remains 
quite high.12 

The linear and quadratic case will not generate a different solution – leaving 
impacts on scaling by the solver aside – if all weights are scaled by the same factor. 
For the HPD this would assume for all estimates a proportional change in the 
coefficient of variation. Under the controlled Monte-Carlo simulations, the same 
was found for the CE case. However, for the split application, we had to use a quite 
high spread of the support to guarantee feasibility which in turn might affect the 
solution behaviour as mentioned above. 

CGE modellers might be more interested in differences in simulation results 
than in the benchmarking data set (see also Cardenete and Sancho, 2003). We 
therefore check to what extent the discussed differences in benchmarking results 
impact simulation results. As we split up the agricultural sector, we test 
differences in results under a 10% total factor productivity shock for wheat. Wheat 
is the major cereal besides rice globally, but unlike rice a considerable share of 
production is used for animal feed. As such, differences in dis-aggregating the 
“Other food processing” sector into feed and a rest of food processing sectors in 
both split exercises is likely to provoke some differences in results. Table reports 
relative changes in wheat output, which is likely to see the largest first order 
impacts. 

It is reassuring to note that reported differences in the balanced data sets in 
Table  resulting from the choice of algorithm or solver do not have large impacts 
on simulated changes. Generally, also changes between the resulting different 
database versions are small. Note that wheat production was completely deleted 
for the SEAsia region in the 57 sector version with ten regions (57x10) by the filter 
step for the two versions with the somewhat more aggressive filter thresholds 
(0.01% and 0.001%). 

Table 8. Simulated maximum and minimum % changes in wheat output under any 

penalty functions and solver under 10% total factor productivity increase for wheat. 
 

Oceania EastAsia SEAsia SouthAsia NAmerica 

 max min max min max min max min max min 

35x10 fabio_ofd -2 2.78 2.70 0.44 0.33 3.78 3.74 0.80 0.75 -2.02 -2.08 

35x10 fabio_ofd -3 2.81 2.72 0.43 0.32 2.28 2.25 0.80 0.80 -2.00 -2.08 

35x10 fabio_ofd -4 2.82 2.72 0.44 0.32 2.21 2.18 0.80 0.80 -1.98 -2.08 

35x10 fabio_osd -2 2.78 2.68 0.44 0.31 3.78 3.69 0.80 0.75 -2.01 -2.09 

35x10 fabio_osd -3 2.80 2.70 0.43 0.31 2.25 2.19 0.80 0.75 -2.01 -2.09 

(Continued) 

 
12 The data driver in CGEBox gives the user the choice which solver to choose such that 
no CPLEX or GUROBI license is required. 
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Table 8. Simulated maximum and minimum % changes in wheat output under any penalty 

functions and solver under 10% total factor productivity increase for wheat (Continued). 

 Oceania EastAsia SEAsia SouthAsia NAmerica 

 max min max min max min max min max min 

35x10 fabio_osd -4 2.79 2.69 0.43 0.32 2.17 2.14 0.80 0.79 -2.01 -2.09 

47x10 fabio_ofd -2 2.83 2.72 0.45 0.33 3.97 3.85 0.82 0.80 -2.04 -2.13 

47x10 fabio_ofd -3 2.81 2.72 0.45 0.33 2.34 2.27 0.83 0.79 -2.04 -2.13 

47x10 fabio_ofd -4 2.95 2.72 0.45 0.34 2.41 2.17 0.82 0.80 -2.02 -2.13 

47x10 fabio_osd -2 2.81 2.71 0.45 0.33 3.90 3.82 0.81 0.80 -2.03 -2.13 

47x10 fabio_osd -3 2.78 2.71 0.45 0.40 2.28 2.24 0.82 0.80 -2.05 -2.13 

47x10 fabio_osd -4 2.81 2.71 0.45 0.33 2.17 2.15 0.81 0.75 -2.03 -2.13 

57x10 fabio_ofd -2 2.75 2.64 0.44 0.33   0.81 0.75 -2.06 -2.16 
57x10 fabio_ofd -3 2.76 2.66 0.45 0.33   0.81 0.75 -2.08 -2.16 

57x10 fabio_ofd -4 2.77 2.66 0.45 0.34 2.21 2.17 0.81 0.80 -2.07 -2.16 
57x10 fabio_osd -2 2.69 2.63 0.44 0.39   0.80 0.79 -2.09 -2.15 

57x10 fabio_osd -3 2.75 2.64 0.45 0.33   0.81 0.77 -2.07 -2.16 
57x10 fabio_osd -4 2.75 2.64 0.45 0.33 2.18 2.06 0.81 0.78 -2.08 -2.17  

LatinAmer EU_28 MENA SSA RestOfWorld 

 max min max min max min max min max min 

35x10 fabio_ofd -2 2.99 2.96 -1.62 -1.65 2.99 2.97 2.36 2.28 2.68 2.45 

35x10 fabio_ofd -3 3.01 2.97 -1.64 -1.64 2.99 2.98 2.39 2.31 2.52 2.40 

35x10 fabio_ofd -4 3.01 2.98 -1.61 -1.64 2.99 2.98 2.39 2.31 2.49 2.34 

35x10 fabio_osd -2 2.98 2.95 -1.64 -1.66 2.98 2.97 2.35 2.27 2.53 2.46 

35x10 fabio_osd -3 2.99 2.96 -1.63 -1.65 3.01 2.98 2.38 2.29 2.52 2.46 

35x10 fabio_osd -4 2.99 2.97 -1.63 -1.64 2.99 2.98 2.38 2.30 2.54 2.47 

47x10 fabio_ofd -2 3.04 2.99 -1.63 -1.65 3.00 2.98 2.42 2.31 2.64 2.32 

47x10 fabio_ofd -3 3.05 3.00 -1.62 -1.65 3.04 3.00 2.44 2.33 3.08 2.34 

47x10 fabio_ofd -4 3.04 3.00 -1.61 -1.65 3.01 3.00 2.44 2.34 2.54 2.34 

47x10 fabio_osd -2 3.02 2.99 -1.64 -1.65 3.00 2.98 2.39 2.30 2.53 2.47 

47x10 fabio_osd -3 3.03 2.99 -1.62 -1.65 3.00 2.98 2.41 2.32 2.53 2.34 

47x10 fabio_osd -4 3.02 3.01 -1.63 -1.65 3.01 2.99 2.41 2.33 2.53 2.39 

57x10 fabio_ofd -2 2.96 2.93 -1.71 -1.75 2.54 2.38 2.36 2.27 3.14 3.07 

57x10 fabio_ofd -3 2.98 2.93 -1.74 -1.77 2.55 2.45 2.39 2.31 3.13 3.09 

57x10 fabio_ofd -4 2.99 2.95 -1.72 -1.75 2.53 2.40 2.40 2.32 3.15 3.09 

57x10 fabio_osd -2 2.95 2.91 -1.73 -1.75 2.54 2.45 2.34 2.26 3.11 3.07 

57x10 fabio_osd -3 2.97 2.94 -1.74 -1.77 2.56 2.46 2.40 2.31 3.12 3.09 

57x10 fabio_osd -4 2.97 2.95 -1.73 -1.76 2.56 2.47 2.39 2.30 3.13 3.08 

Notes: Simulation with CGEBox under a  GTAP Standard V7 configuration. 

Source: Author calculations from simulation experiments. 
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We also find (not reported as a separate table), similar to the Monte-Carlo 
experiment for the SAM balancing exercise, that differences between the HPD and 
the CE framework are quite small. This reflects that both assume uniform relative 
standard errors. The limited differences in simulation results further underline 
that without strong a-priori knowledge on the distribution of error terms, 
robustness, speed and flexible control on sub-totals and cost/revenue share 
bounds are relevant viewpoints for the choice of the balancing framework. 

6. Summary and conclusion 

We applied different penalty functions to firstly balance stochastically 
generated square matrices with known error terms, and secondly to dis-aggregate 
differently detailed global GTAP data bases to more sector and product detail. The 
penalty functions considered are relative quadratic deviations motivated from a 
HPD Estimator, a CE measure and relative absolute ones, i.e. linear loss. 
Compared to the matrix balancing problem, the more evolved dis-aggregation 
exercise controlled additionally for sparsity by setting very small a-priori entries 
to zero. It comprised besides linear exhaustion conditions also inequalities, for 
instance, to control for plausible tax rates. For both type of problems, we assessed 
differences in solution time, resulting imbalances in the generated SAMs, and the 
estimates themselves. These represent the newly introduced SAM entries for the 
dis-aggregation exercise, respectively the balanced matrix elements in the Monte-
Carlo experiments. In order to use specialized LP and QP solvers, we only used 
linear (in)equalities as constraints, i.e. adding up conditions, bounds on single 
variables, or bounds on sub-totals, including unknown ones. 

We find, perhaps surprisingly, only moderate differences in estimates across 
the penalty functions. Regarding accuracy achieved and particularly solution time, 
the linear loss approach gave considerably better results compared to the 
alternatives, especially if specialized QCP/LP solvers are used. It should be noted 
that the license costs for commercial use of these solvers are considerable while 
they can be freely used for purely academic purposes. Conversely, the less 
specialized CONOPT4 solver which can solve general NLP problems with any 
differentiable objective and constraints always requires a paid-for license, with 
lower license fees for the commercial case. In opposite to the specialized solvers, 
it can also solve the CGE model. The larger solving times of CONOPT4 for the 
linear and quadratic loss approach compared to the specialized solvers probably 
do not matter much in moderately sized problem such as balancing a single 
country SAMs. In our largest splitting exercise however, CONOPT4 required an 
hour where the specialized solvers needed only a few seconds. We also found that 
a specially developed RAS variant could increase accuracy further, independent 
of which solver or penalty function was used. It also provides an additional check 
if the data set is balanced. 



Journal of Global Economic Analysis, Volume 6 (2021), No. 1, pp.  34-81. 

 
 

 69 

The differences between the CE and HPD estimators in the estimates were quite 
small, both under the controlled Monte-Carlo experiment and the empirical 
splitting application. In all cases, normal distributed error terms were assumed. 
However, we had to use a quite high difference between the smallest and largest 
support for the CE approach in the empirical example to avoid infeasibilities 
issues. The solution times for the non-linear approaches, i.e. quadratic loss and CE, 
were mostly found to be considerably higher compared to a linear loss approach, 
even with the same solver and especially for CE. We conclude form these findings 
that the simpler quadratic loss approach, motivated by maximizing the posterior 
density, is recommended over a CE approach, at least if normality of the errors is 
assumed. The CE approach is however more flexible as it can approximate 
moments of any error distribution with a higher number of supports and related 
a-priori probabilities. 

We checked if differences in the benchmark resulting from the different 
approaches impact on simulation results. As the dis-aggregation related to agri-
food sectors, we increased total factor productivity for wheat by 10% as a test 
shock and checked differences in changes of total wheat output. We found some, 
but rather limited differences across different filter thresholds, data sets with more 
or less non-agri food detail, penalty functions and solvers, but basically no 
differences between the HPD and CE approaches. 

Summarizing, we consider a QCP or LP framework controlling for sparsity 
combined with plausible bounds / relations as a promising methodology for 
various data fusion / balancing problems arising, for instance, when constructing 
single country SAMs embedded in a global one. The possibility to control for each 
entry subject to balancing the weight for absolute or relative deviations in the 
objective function allows considering differences in uncertainties. Our tests 
underline that modern QCP/LP solvers can solve large data fusion problem quite 
fast, while allowing for sufficiently small infeasibility tolerances to avoid problems 
in subsequent benchmarking of the simulation model. The set driven concept of 
algebraic modelling languages such as GAMS allows for a transparent 
implementation of such problems such that the same framework for rebalancing 
or filtering can be easily applied to differently detailed data bases. The code to 
replicate the simulations described in this paper is included in the supplementary 
files accompanying this manuscript and can be readily adapted for other 
applications. 
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Appendix. GAMS code for the Monte Carlo experiments 

A.1. Core program 

$offlisting 

$offlisting 

$setglobal size 40 

 

 

option lp=conopt4; 

option qcp=conopt4; 

option nlp=conopt4; 

 

set is   "Sam columns/rows" / i1*i%size%/; 

alias(is,js); 

$evalglobal len card(is)*card(is) 

 

scalar pos/1/; 

loop( (is,js), 

  pos = pos+1; 

) 

set sup   "Support points for CE approach" / s1*s5/; 

set draws "Monte-Carlo draws of SAMs"      / d1*d100/; 

scalar curTime; 

* 

* --- the variants with p will cut off estimates at zero 

* 

set var   "variances considers" 

/"v0.1","v0.5",v1,v2,v5,"v0.1p","v0.5p",v1p,v2p,v5p/; 

 

variables 

    v_prob(is,js,sup)   "Posteriori probabilities attached to support" 

    v_ent               "Entropy measures" 

    v_hpd               "Posteriori density" 

    v_absDiff           "Sum of absolute difference" 

    v_sam(is,js)        "Sam entries" 

; 

positive variables 

    v_samErrP(is,js)    "Positive deviations from given cell entry" 

    v_samErrN(is,js)    "Negative deviations from given cell entry" 

    v_prob(is,js,sup)   "Endogenous probabilities attached to supports" 

; 

equations 

    e_colSum(is)        "Given column sum constraint" 

    e_rowSum(is)        "Given row sum constraint" 

    e_colSumSup(is)        "Given column sum constraint" 

    e_rowSumSup(is)        "Given row sum constraint" 

    e_samErr(is,js)     "Define estimate from positive and negative error" 

    e_samSup(is,js)     "Define estimate from supports and probs" 

    e_addProb(is,js)    "Adding up of probs to unity" 

    e_hpd               "Define posteriori density" 

    e_absDiff           "Define sum of abs diffs" 

    e_ent               "Define entropy" 

; 

 

 parameter p_sum(is)         "Row or column sum" 

           p_sam(is,js)      "Observed (but unbalanced) SAM entries" 

           p_sup(is,js,sup)  "Supports for SAM entries" 

           p_prob(sup)       "A priori probabilities of supports" 

           p_var(var)        "Variance of error terms" 

           p_res(*,*,*,*)    "Reporting array" 

; 

* 
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* --- definition of balancing framework 

* 

 e_colsum(is)    .. sum(js, v_sam(is,js)) =e= p_sum(is); 

 

 e_rowsum(is)    .. sum(js, v_sam(js,is)) =e= p_sum(is); 

 

 e_samErr(is,js) .. v_sam(is,js) =E= p_sam(is,js) + v_samErrP(is,js) - 

v_samErrN(is,js); 

 

 e_samSup(is,js) .. v_sam(is,js) =E= sum(sup, p_sup(is,js,sup) * 

v_prob(is,js,sup)); 

 

 e_addProb(is,js) .. 1 =E= sum(sup, v_prob(is,js,sup)); 

 

 e_hpd           .. v_hpd     =e= sum( (is,js), sqr( v_sam(is,js) - 

p_sam(is,js))); 

 

 e_absDiff       .. v_absDiff =e= sum( (is,js), v_samErrP(is,js) + 

v_SamErrN(is,js)); 

 

 e_ent           .. v_ent     =e= sum( (is,js,sup), 

centropy(v_prob(is,js,sup),p_prob(sup)) ); 

 

* 

* --- model definitions 

* 

  option limCol=0,limRow=0; 

 

  model m_hpd / e_colSum,e_rowSum,e_hpd /; 

  m_hpd.solprint  = 2; 

  m_hpd.solvelink = 5; 

  m_hpd.bratio    = 1; 

 

  model m_absDiff / e_colSum,e_rowSum,e_samErr,e_absDiff /; 

  m_absDiff.solprint  = 2; 

  m_absDiff.solvelink = 5; 

  m_absDiff.bratio    = 1; 

 

  model m_ent     / e_colSum,e_rowSum,e_samSup,e_addProb,e_ent /; 

  m_ent.solprint  = 2; 

  m_ent.solvelink = 5; 

  m_ent.bratio    = 1; 

 

  p_prob("s1") = 1/162; 

  p_prob("s2") = 16/81; 

  p_prob("s3") = 48/81; 

  p_prob("s4") = 16/81; 

  p_prob("s5") = 1/162; 

  v_prob.lo(is,js,sup) = 1.E-8; 

  v_prob.up(is,js,sup) = 1 - 2.E-8; 

 

  p_var("v0.1") = 0.1; 

  p_var("v0.5") = 0.5; 

  p_var("v1")   = 1; 

  p_var("v2")   = 2; 

  p_var("v5")   = 5; 

 

  p_var("v0.1p") = 0.1; 

  p_var("v0.5p") = 0.5; 

  p_var("v1p")   = 1; 

  p_var("v2p")   = 2; 

  p_var("v5p")   = 5; 
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* 

*  --- parameter related to GRAS code to generate a balanced SAM 

*      to start with 

* 

$batinclude 'gras.gms' decl p_sam 

   option kill=p_res; 

* 

* --- Monte Carlo draws 

* 

 loop( (var,draws), 

 

   put_utility 'msglog' / 'Variance : ' var.tl ' Draws ' draws.tl; 

 

 

* 

*    --- draw randomly SAM entries 

* 

   option kill=p_checkSam; 

   p_sam(is,js) = exp(normal(0,3)); 

   p_sam(is,js) $ (abs(p_sam(is,js)) le 1.E-8) = 0; 

   p_sam(is,js) $ (abs(p_sam(is,js)) gt 1.E+8) = 0; 

* 

*  --- run GRAS define column = row sum (SAM is now balanced) 

* 

   p_sum(is) = sum(js, p_sam(is,js)) * 0.5 + sum(js, p_sam(js,is)) * 0.5; 

$batinclude 'gras.gms'  run p_sam 

   p_sum(is) = sum(js, p_sam(is,js)); 

* 

*  --- store true value (= element of balanced SAM) 

* 

   v_sam.scale(is,js) = p_sam(is,js); 

* 

*  --- add normally distributed white noise error terms, variance = p_var 

*      = "observed" SAM entries, e.g. from official statistics 

*        (provoke imbalances in the SAM) 

* 

   p_sam(is,js)   = p_sam(is,js) + normal(0,sqrt(p_var(var))); 

   p_sam(is,js) $ ( var.pos gt card(var)/2) = max(0,p_sam(is,js)); 

* 

   p_res(var,"true","meanErr",draws)    = sum( (is,js),      (  p_sam(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"true","meanAbsErr",draws) = sum( (is,js), abs  (  p_sam(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"true","varErr",draws)     = sum( (is,js), sqr  ( (p_sam(is,js) - 

v_sam.scale(is,js)))  )/ sqr(card(is)); 

   p_res(var,"true","skewN",draws)      = sum( (is,js), power( (p_sam(is,js) - 

v_sam.scale(is,js)),3))/ sqr(card(is)) 

                                            * 1 /  

p_res(var,"true","varErr",draws)**(3/2); 

* 

*  --- this is the starting value for the HPD estimator 

* 

   option kill=e_rowSum,kill=e_colSum,kill=e_hpd,kill=v_sam.m; 

   v_sam.l(is,js) = p_sam(is,js); 

   v_sam.lo(is,js) $ ( var.pos gt card(var)/2) = 0; 

   v_hpd.l = 0; 

   solve m_hpd using qcp minimizing v_hpd; 

* 

*  --- define three metrics: mean, variance, skewness of estimated error terms 

* 

   p_res(var,"hpd","meanErr",draws)    = sum( (is,js),      (  v_sam.l(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 
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   p_res(var,"hpd","meanAbsErr",draws) = sum( (is,js), abs  (  v_sam.l(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"hpd","varErr",draws)     = sum( (is,js), sqr  ( (v_sam.l(is,js) - 

v_sam.scale(is,js)))  )/ sqr(card(is)); 

   p_res(var,"hpd","skewN",draws)      = sum( (is,js), power( (v_sam.l(is,js) - 

v_sam.scale(is,js)),3))/ sqr(card(is)) 

                                            * 1 /  

p_res(var,"hpd","varErr",draws)**(3/2); 

* 

*  --- store seconds used for solve and the status 

* 

   p_res(var,"hpd","iterUsd",draws)    = m_hpd.iterUsd; 

   p_res(var,"hpd","resUsd",draws)     = m_hpd.resusd; 

   p_res(var,"hpd","solveStat",draws)  = m_hpd.solveStat; 

   p_res(var,"hpd","modelStat",draws)  = m_hpd.modelStat; 

* 

*  --- minimizing absolute differences 

*      (Clear old results and set starting point) 

* 

   option kill=e_rowSum,kill=e_colSum,kill=e_samErr,kill=e_absdiff,kill=v_sam.m; 

   option kill=v_samErrP,kill=v_samErrN; 

   v_sam.l(is,js) = p_sam(is,js); 

   v_absDiff.l = 0; 

   solve m_absDiff using lp minimizing v_absDiff; 

* 

*  --- same metric as above for HPD 

* 

   p_res(var,"absDiff","meanErr",draws)    = sum( (is,js),        (  

v_sam.l(is,js) - v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"absDiff","meanAbsErr",draws) = sum( (is,js),   abs  (  

v_sam.l(is,js) - v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"absDiff","varErr",draws)     = sum( (is,js),   sqr  ( 

(v_sam.l(is,js) - v_sam.scale(is,js)))   )/ sqr(card(is)); 

   p_res(var,"absDiff","skewN",draws)      = sum( (is,js),   power( 

(v_sam.l(is,js) - v_sam.scale(is,js)),3))/ sqr(card(is)) 

                                         * 1 /  

p_res(var,"absDiff","varErr",draws)**(3/2); 

   p_res(var,"absDiff","resUsd",draws)     = m_absDiff.resusd; 

   p_res(var,"absDiff","iterUsd",draws)    = m_absDiff.iterUsd; 

   p_res(var,"absDiff","solveStat",draws)  = m_absDiff.solveStat; 

   p_res(var,"absDiff","modelStat",draws)  = m_absDiff.modelStat; 

* 

*  --- cross entropy approach 

*      (initialize SAM to observed, probs to a priori) 

 

   option 

kill=e_rowSum,kill=e_colSum,kill=e_samSup,kill=e_addProb,kill=e_absdiff,kill=v_sam

.m,kill=e_ent,kill=v_prob.m; 

   p_sup(is,js,"s1")    = p_sam(is,js) - 3; 

   p_sup(is,js,"s2")    = p_sam(is,js) - 1.5; 

   p_sup(is,js,"s3")    = p_sam(is,js); 

   p_sup(is,js,"s4")    = p_sam(is,js) + 1.5; 

   p_sup(is,js,"s5")    = p_sam(is,js) + 3; 

   v_sam.l(is,js)       = p_sam(is,js); 

   v_prob.l(is,js,sup)  = p_prob(sup); 

   v_ent.l     = sum( (is,js,sup), v_prob.l(is,js,sup) * [ 

log(v_prob.l(is,js,sup)) - log(p_prob(sup)) ]); 

   solve m_ent using nlp minimizing v_ent; 

* 

   p_res(var,"ent","meanErr",draws)    = sum( (is,js),        (  v_sam.l(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"ent","meanAbsErr",draws) = sum( (is,js),   abs  (  v_sam.l(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 
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   p_res(var,"ent","varErr",draws)     = sum( (is,js),   sqr  ( (v_sam.l(is,js) - 

v_sam.scale(is,js)))   )/ sqr(card(is)); 

   p_res(var,"ent","skewN",draws)      = sum( (is,js),   power( (v_sam.l(is,js) - 

v_sam.scale(is,js)),3))/ sqr(card(is)) 

                                         * 1 /  

p_res(var,"ent","varErr",draws)**(3/2); 

   p_res(var,"ent","resUsd",draws)     = m_ent.resusd; 

   p_res(var,"ent","iterUsd",draws)    = m_ent.iterUsd; 

   p_res(var,"ent","solveStat",draws)  = m_ent.solveStat; 

   p_res(var,"ent","modelStat",draws)  = m_ent.modelStat; 

* 

*  --- GRAS 

* 

   curTime = timeElapsed; 

   v_sam.l(is,js) = p_sam(is,js); 

$batinclude 'gras.gms'  run v_sam.l 

 

   p_res(var,"ras","meanErr",draws)    = sum( (is,js),      (  v_sam.l(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"ras","meanAbsErr",draws) = sum( (is,js), abs  (  v_sam.l(is,js) - 

v_sam.scale(is,js)))/ sqr(card(is)); 

   p_res(var,"ras","varErr",draws)     = sum( (is,js), sqr  ( (v_sam.l(is,js) - 

v_sam.scale(is,js)))  )/ sqr(card(is)); 

   p_res(var,"ras","skewN",draws)      = sum( (is,js), power( (v_sam.l(is,js) - 

v_sam.scale(is,js)),3))/ sqr(card(is)) 

                                         * 1 /  

p_res(var,"ras","varErr",draws)**(3/2); 

   p_res(var,"ras","resUsd",draws)     = timeElapsed - curTime; 

 ); 

 

 set modVar   / true,hpd,absDiff,ent,ras /; 

 set metrics / meanErr,meanAbsErr,varErr,skewN,resUsd,iterUsd,solveStat,modelstat 

/; 

 

 p_res(var,modVar,metrics,"mean")    = sum(draws, 

p_res(var,modVar,metrics,draws))/card(draws); 

 p_res(var,modVar,"skewNAbs","mean") = sum(draws, 

abs(p_res(var,modVar,"skewN",draws)))/card(draws); 

 

 display p_res; 

 execute_unload "testSamPen_%size%.gdx";
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A.2. G-RAS plus DSS routine 
$offlisting 

* 

*  --- simple Generalized RAS plus DSS 

* 

$ifthen.def %1==decl 

   scalar 

p_maxError,p_oriMaxError,p_lastMaxError,p_sumError,p_oriSumError,p_lastSumError; 

 

   set maxIs(is); 

   set trials /t1*t10000/; 

   set repItems / 

colSum,rowSum,colSumD,rowSumD,multR,multC,p_rowSum,n_rowSum,p_colSum,n_colSum,delt

a,deltaDss,scaleDss /; 

 

   parameters 

             p_checkSam(*,*) 

             p_samLast(is,js) 

   set       toCorr(is,js); 

   scalar dss      / 0 /; 

$endif.def 

* 

$if %1==decl $exit 

 

$setglobal sam %2 

 

 

   option kill=p_checkSam; 

   dss = 0; 

   p_checksam(is,"colSum") = sum(js, %sam%(is,js)); 

   p_checksam(is,"rowSum") = sum(js, %sam%(js,is)); 

   p_checksam(is,"delta")  = p_checksam(is,"colSum") - p_checkSam(is,"rowSum"); 

   p_checksam(is,"delta")  = p_checksam(is,"colSum") - p_checkSam(is,"rowSum"); 

   p_checksam("max","delta")  = smax(is, abs(p_checkSam(is,"delta"))); 

 

   p_checksam(is,"colSumD") = p_sum(is); 

   p_checksam(is,"rowSumD") = p_sum(is); 

 

   p_sumError = sum ( (is), abs(p_checksam(is,"delta"))); 

   p_maxError = p_checksam("max","delta"); 

   p_oriMaxError = p_maxError; 

   p_oriSumError = p_sumError; 

 

   if ( p_maxError > 1.E-10, 

      put_utility 'msglog' / 'Max balancing error in SAM before RAS: 

',p_maxError:0:8,' sum : ',p_sumError:0:8; 

   else 

      put_utility 'msglog' / 'Max balancing error in SAM: ',p_maxError:0:8; 

   ); 

 

   p_lastMaxError = p_maxError; 

   p_lastSumError = p_sumError + max(1.E-10,1.E-6*p_sumError); 

 

   toCorr(is,js) $  ( abs(%sam%(is,js)) gt 1.E-7) = yes; 

   toCorr(is,js) $ (toCorr(is,js) $ ( abs(p_checksam(is,"delta")) le 1.E-12)) = 

no; 

   toCorr(is,js) $ (toCorr(is,js) $ ( abs(p_checksam(js,"delta")) le 1.E-12)) = 

no; 

   toCorr(is,js) $ toCorr(js,is) = yes; 

   toCorr(js,is) $ toCorr(is,js) = yes; 

 

   p_checksam(is,"p_colSum")=  sum(js $ ((%sam%(is,js) gt 0)), %sam%(is,js)); 

   p_checksam(is,"n_colSum")= -sum(js $ ((%sam%(is,js) lt 0)), %sam%(is,js)); 
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   p_checksam(is,"p_rowSum")=  sum(js $ ((%sam%(js,is) gt 0)), %sam%(js,is)); 

   p_checksam(is,"n_rowSum")= -sum(js $ ((%sam%(js,is) lt 0)), %sam%(js,is)); 

 

   loop(trials $  ( ( (p_maxError > 5E-9)   or  (  (p_sumError > (5.E-9*card(is))) 

and p_maxError > 1.E-9 ) ) 

                                            and (  ((p_maxError lt p_lastMaxError) 

or (p_sumError lt p_lastSumError)) or dss)), 

 

     p_lastMaxError = p_maxError; 

     p_lastSumError = p_sumError; 

     p_samLast(is,js) = %sam%(is,js); 

 

 

*     put_utility 'msglog' / "'Generalized RAS, iteration '" trials.pos:0:2 "', 

max balancing error '" p_maxError:0:8 "', sum balancing error '" p_sumError:0:8 

"', DSS '" DSS:0:0 

     if ( dss, 

 

 

        option kill=maxis; 

        maxis(is) $ ((  abs(p_checksam(is,"delta")) eq p_checkSam("max","delta")) 

$  abs(p_checksam(is,"delta"))) = YES; 

        maxis(is) $ (  is.pos ne smax(js $ maxis(js), js.pos) ) = NO; 

 

        p_checksam(maxis(is),"scaleDSSC") $ (sign(p_checksam(is,"rowsum")) eq 

sign(p_checkSam(is,"colsum")) ) 

          = sqrt(p_checksam(is,"rowsum")/p_checksam(is,"colsum")); 

        p_checksam(maxis(is),"scaleDSSR") = 1/p_checkSam(is,"scaleDSSC"); 

 

        %sam%(is,js) $ (maxis(is) $ (not maxis(js)) $ toCorr(is,js) $ 

p_checksam(is,"scaleDSSC") ) 

           = %sam%(is,js) + %sam%(is,js) * (p_checksam(is,"scaleDSSC") -1); 

 

        %sam%(js,is) $ (maxis(is) $ (not maxis(js)) $ toCorr(js,is) $ 

p_checksam(is,"scaleDSSR") ) 

           = %sam%(js,is) + %sam%(js,is) * (p_checksam(is,"scaleDSSR")-1); 

 

     else 

 

        p_checksam(is,"p_colSum") $ p_checksam(is,"p_colSum") 

          =  sum(js $ (%sam%(is,js) gt 0), %sam%(is,js)); 

        p_checksam(is,"n_colSum") $ p_checksam(is,"n_colSum") 

          = -sum(js $ (%sam%(is,js) lt 0), %sam%(is,js)); 

 

        $$ifi "%sam%"=="p_sam" p_checksam(is,"colSumD") = p_checksam(is,"colSum") 

- 0.5 * p_checksam(is,"delta"); 

 

        p_checksam(is,"multC") $ (p_checksam(is,"colSumD") $ 

(abs(p_checksam(is,"delta")) ge 1.E-10)) 

         =   { [ p_checksam(is,"colSumD") - 2*p_checksam(is,"p_colSum") 

                                       + sqrt( 

p_checksam(is,"colSumD")*p_checksam(is,"colSumD") 

 

                                       + 

4*p_checksam(is,"p_colSum")*p_checksam(is,"n_colSum"))] 

                                     / (2*p_checksam(is,"p_colSum"))} $ 

p_checksam(is,"p_colSum") 

          +  {  - p_checksam(is,"n_colSum")/p_checksam(is,"colSumD") -1 } 

                  $ (p_checksam(is,"p_colSum") lt 1.E-

8*p_checksam(is,"n_colSum")); 
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        %sam%(is,js) $ ( toCorr(is,js) $ (%sam%(is,js) gt 0) $  

p_checksam(is,"multC")) 

            = %sam%(is,js) * p_checksam(is,"multC") + %sam%(is,js); 

 

        %sam%(is,js) $ ( toCorr(is,js) $ (%sam%(is,js) lt 0) $ 

p_checksam(is,"multC")) 

            = %sam%(is,js) * (1/(1+p_checksam(is,"multC")) -1) + %sam%(is,js); 

 

        $$ifi "%sam%"=="p_sam" p_checksam(is,"rowSumD") = sum(js, %sam%(is,js)); 

 

        p_checksam(is,"p_rowSum") $ p_checksam(is,"p_rowSum") 

          =  sum(js $ (%sam%(js,is) gt 0), %sam%(js,is)); 

        p_checksam(is,"n_rowSum") $ p_checksam(is,"n_rowSum") 

          = -sum(js $ (%sam%(js,is) lt 0), %sam%(js,is)); 

 

        p_checksam(is,"multR") $ (p_checksam(is,"rowSumD") $ 

(abs(p_checksam(is,"delta")) ge 1.E-10)) 

         =   { [ p_checksam(is,"rowSumD") - 2*p_checksam(is,"p_rowSum") 

                                       + sqrt( 

p_checksam(is,"rowSumD")*p_checksam(is,"rowSumD") 

 

                                       + 

4*p_checksam(is,"p_rowSum")*p_checksam(is,"n_rowSum"))] 

                                     / (2*p_checksam(is,"p_rowSum"))} $ 

p_checksam(is,"p_rowSum") 

          +  {  - p_checksam(is,"n_rowSum")/p_checksam(is,"rowSumD") -1 } 

                  $ (p_checksam(is,"p_rowSum") lt 1.E-

8*p_checksam(is,"n_rowSum")); 

 

        p_checksam(is,"multR") $ (    sign(p_checksam(is,"rowSum")) 

                                        ne sign(p_checksam(is,"rowSumD")))  = - 

p_checksam(is,"multR"); 

 

        %sam%(is,js) $ ( toCorr(is,js) $ (%sam%(is,js) gt 0) $ 

p_checksam(js,"multR")) 

          = %sam%(is,js) + %sam%(is,js) * p_checksam(js,"multR") ; 

 

        %sam%(is,js) $ ( toCorr(is,js) $ (%sam%(is,js) lt 0) $ 

p_checksam(js,"multR")) 

          = %sam%(is,js) * (1/(1+p_checksam(js,"multR")) -1) + %sam%(is,js); 

     ); 

* 

*    --- calculate colum/row sums and resulting errors 

* 

     p_checksam(is,"colSum") $ p_checksam(is,"colSum")  = sum(js, %sam%(is,js)); 

     p_checksam(is,"rowSum") $ p_checksam(is,"rowSum")  = sum(js, %sam%(js,is)); 

 

     p_checksam(is,"delta")   =  p_checksam(is,"colSum")- p_checksam(is,"rowSum"); 

     $$iftheni.sam "%sam%"=="v_sam.l" 

 

        p_checksam(is,"delta") $ (not dss)  =  abs(p_checksam(is,"colSum")-

p_checksam(is,"colSumD")) 

                                             + abs(p_checksam(is,"rowSum")-

p_checksam(is,"rowSumD")); 

     $$endif.sam 

 

 

     toCorr(is,js) $ (toCorr(is,js) $ ( abs(p_checksam(is,"delta")) le 1.E-10)) = 

no; 

     toCorr(is,js) $ (toCorr(is,js) $ ( abs(p_checksam(js,"delta")) le 1.E-10)) = 

no; 

     toCorr(is,js) $ ( abs(p_checksam(is,"delta")) gt 1.E-9) = yes; 

     toCorr(is,js) $ ( abs(p_checksam(js,"delta")) gt 1.E-9) = yes; 
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     toCorr(is,js) $ toCorr(js,is) = yes; 

     toCorr(js,is) $ toCorr(is,js) = yes; 

     toCorr(is,js) $ ( abs(%sam%(is,js)) le 1.E-7) = no; 

 

     p_checksam("max","delta") = smax(is, abs(p_checkSam(is,"delta"))); 

     p_checksam("max","dss")   = dss; 

     p_checksam("max","try")   = trials.pos; 

 

     p_sumError = sum ( (is), abs(p_checksam(is,"delta"))); 

     p_maxError = abs(p_checksam("max","delta")); 

 

*    display p_sumerror,p_maxError,p_lastMaxerror,p_lastSumError,dss; 

 

     if ( ( (p_maxError ge p_lastMaxError) and  (p_sumError ge p_lastSumError)) or 

( (trials.pos gt card(trials)/10) and (dss eq 0)), 

* 

*       --- if G-RAS stalls, switch to DSS 

* 

        dss = 1; 

        p_maxError = p_lastMaxError; 

        p_sumError = p_lastSumError; 

        %sam%(is,js) = p_samLast(is,js); 

     else 

        dss  = 1 $ ( ( (p_maxError lt p_lastMaxError) or (p_sumError lt 

p_lastSumError)) $ dss) 

     ); 

   ); 

 

   option p_checkSam:7; 

   abort $ (p_checkSam("max","delta") gt 5.E-8) p_checkSam,maxis,p_res; 

 

   put_utility 'msglog' / 'Max balancing error in SAM afer  RAS: 

',p_maxError:0:8,' sum : ',p_sumError:0:8,' trials ',p_checkSam("max","try"):0:0; 
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