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1. Introduction 

Personal consumption expenditure is by far the largest component of final 
demand in most countries and changes in its commodity composition are an 
important driver of structural change. An appropriate representation of 
household consumption is therefore essential for models focused on long-run 
dynamics, either covering the whole economy such as Computable General 
Equilibrium (CGE) models or detailing specific sectors such as Partial 
Equilibrium models for the energy or agri-food sectors. 

Micro-analysis of household behavior has highlighted that apart from the 
main drivers of prices and income, factors such as cultural and religious norms, 
and household demographic and location characteristics determine consumption 
behavior. Aggregate consumption is further affected by population composition. 
Disentangling these drivers from income and price dynamics in long-run 
analysis using aggregate demand functions is challenging. The evidence from 
many studies shows non-monotonic income effects; for example, certain types of 
food or gasoline are normal goods at low incomes, but inferior ones at high 
incomes. Implementing functions with well-founded price and income 
elasticities that can represent the observed income dynamics is therefore the 
focus of improving the representation of long-run baseline consumption in CGE 
models.  

Comprehensive modelling of household demand over a long horizon, 
however, remains challenging, as highlighted by a workshop jointly organized 
by GTAP and OECD in January 2018. As a follow-up to this workshop, we first 
review here how household consumption is modeled in a broad range of CGE 
models and discuss the merits and deficiencies of these approaches. We focus on 
dynamic multi-country CGE models, myopic or with foresight, with varying 
detail of industry disaggregation, including CGE models with a focus on agri-
food, land use and energy. We touch only briefly on modelling leisure demand, 
labor supply and savings and devote the bulk of the paper on the allocation of 
household expenditures for final consumption. We concentrate on the single 
aggregate household representation which ignores different preferences of 
household members1. We also neglect further attributes in the utility function 
such as an index of environmental quality as found in certain environmental 
models. 

In section 2, we first discuss historical consumption behavior before reviewing 
modelling approaches used by CGE models in section 3. We believe it would be 
useful for modelers to consider alternatives to the common CES and LES 

 
1  Those interested in household models would find the survey by Chiappori and 
Mazzocco (2017) helpful. 
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functions and thus discuss the pros and cons of various approaches in some 
detail. Section 4 then describes how base paths of consumption function 
parameters are projected by various models, including extensions to approaches 
that overcome some of their limitations. We then turn to other determinants of 
final demand. We summarize the current approaches to modelling investment 
commodity demands and construction of their base paths in section 5. Modelling 
the commodity composition of government final demand is also briefly 
discussed in Section 5. Section 6 then summarizes our recommendations on the 
best practices in making such projections and discusses a research agenda to fill 
in the gaps in knowledge of specifying and implementing consumption models. 

2. Observed consumption behavior and elasticities 

In order to establish a final demand pathway in baseline construction that can 
be widely accepted, models need to be able to emulate the observed 
consumption behavior of households. The first step in constructing demand 
functions with well-founded price and income elasticities that can account for 
current and future consumption trends is thus to establish the historical record of 
consumption behavior. The work on consumption is huge, but we only focus 
here on the parts relevant for use in large global simulation models with highly 
aggregated sectors and households.  

Textbook models of individual consumption give us functions of income and 
prices and there is a large empirical literature estimating such functions based on 
individual or household level data. The study of consumption is one of the 
earliest empirical studies by economists, starting with Engel’s Law (Chai and 
Moneta, 2010), and we thus have a wealth of knowledge compared to other 
issues in CGE modelling. In the 3-sector model tradition of Fisher, Clark and 
Fourastié we may say that, as income rises, individual households, or entire 
economies, allocate an increasing share of consumption expenditure to 
manufactured goods and, at even higher incomes, an increasing share to services. 
This is especially pronounced for countries projected to undergo a period of fast 
per capita income growth in the time horizon of the baseline. In addition, certain 
disaggregated commodity groups such as food and energy are particularly 
affected by income changes and need to be carefully modeled when analyzing 
the bioeconomy or impacts of climate change.   

This section reviews past and current consumption trends as well as the 
empirical work estimating demand elasticities for modeling these trends. We 
discuss data sources and the problems of aggregation of commodities and 
households.  

2.1 General consumption trends and income elasticities 

We first give a representative view of rich-country consumption by 
summarizing the results for the U.S. in Jorgenson et al. (2013, Fig. 3.1) and 
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updated to 2016 for Figure 1. They model a full-consumption function with 
leisure and three bundles of consumption commodities at the top tier, namely 
nondurables, capital, and services. These three bundles are disaggregated to 35 
commodities in lower tiers. The first feature to note is that aggregate expenditure 
shares change significantly over time, changes that do not correspond entirely to 
price movements as illustrated in Figure 1. The leisure share is large in their 
approach, but the downward trend after 1970 holds for other methods of 
defining time endowment, which  is due to the rapid rise in the female labor 
force participation rate in the U.S. The falling share of nondurables (including 
food) and the rising share for services is a common feature of rising incomes. 
Capital services is an annualized flow from durables and housing,, and the 
relatively flat share hides different trends in component prices – rapidly falling 
electronic equipment prices and slowly rising housing prices. 

 

Figure 1. Consumption shares of the U.S. between 1960 and 2008: Nondurables, 
annualized capital services, consumer services, leisure. 

          Source: Authors’ calculations based on Jorgenson et al. (2013, Fig. 3.1). 

To have a broader global coverage, Table 1 from Muhammad et al. (2011), 
gives the budget shares for 9 major consumption bundles in 2005 for low-, 
medium- and high-income countries. Food is a major portion (48%) of poor 
household budgets around the world today, while richer households spend more 
on transport, communication and other commodities. 
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Table 1: Budget shares of aggregate commodity types in different countries in 2005 

Commodity type Country type 

 
Low-income Middle-income High-income 

Food, beverages and tobacco 0.485 0.311 0.204 

Clothing & footwear 0.061 0.055 0.051 

Housing 0.135 0.183 0.187 

House furnishing 0.052 0.056 0.06 

Medical care  0.045 0.059 0.089 

Education 0.034 0.033 0.031 

Transport & communication  0.102 0.155 0.149 

Recreation  0.031 0.061 0.095 

Other 0.054 0.087 0.134 

Source: Muhammad et al. (2011). 

The impact of rising incomes on aggregated demand is demonstrated in more 
detail by Britz and Roson (2019), who use national data from the International 
Comparison Project (ICP) to estimate an AIDADS demand system for the world 
economy. Their results for aggregate spending categories are illustrated in Figure 
2 and show that at low income levels around 50% is spent on food, following by 
housing expenditures. At high income levels, food expenditures account for only 
around 15%, while the share of the cost of housing tends to a constant.  
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Figure 2. Consumption shares with raising per-capita income in US$ 
as estimated by Britz and Roson (2019), AIDADS. 

Note: Simulated of budget shares with estimated parameters at mean sample price, not CGE model 
results. 

Source: Britz and Roson 2019. 

2.1.1 Food demand 

Figure 2 has emphasized the large impact of income changes on food demand. 
The study of food demand is one of the earliest empirical economics work and 
Engel’s Law was named in honor of his 1857 paper on this subject. He found that 
with rising income the share of food in total expenditure diminishes, leading to 
lower marginal budget shares of food (Chaudri and Timmer, 1986). In addition, 
Bennett’s law looks at the composition of food demand and states that income 
growth leads to an increasing share of livestock products and a reduction in the 
share of staple foods in total food expenditure (Bennett, 1941). Both laws have 
been empirically proven across time and countries at different development 
stages and presently describe part of the food demand dynamics in emerging 
economies such as China and India. 

In more recent decades, the global composition of food demand has been 
changing rapidly due to income changes through higher economic growth (Yu et 
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al., 2004), structural change, urbanization and globalization. Supply side factors 
such as the expansion of supermarkets in developing regions are also major 
determinants of dietary change (Hawkes et al., 2017). As a result, dietary patterns 
in emerging and developing economies are diversifying and converging to the 
diet of Western countries that is rich in livestock products (including both meat 
and dairy) as well as highly processed foods consisting of refined carbohydrates, 
fats and sugar (Pingali, 2006; Popkin et al, 2012). Table 2 shows food budget 
shares of countries grouped by income as reported in Muhammad et al. (2011) 
and demonstrates both Bennett’s law when comparing the food budget shares 
between low- and middle-income countries as well as the tendency of high-
income countries to consume higher shares of processed food (“other food”). 
This is also confirmed by Britz and Roson (2019) who estimated an AIDADS 
demand system with detailed aggregation of food types which are mapped into 
the GTAP sectors. Their estimates are shown in Figure 3 and highlight that food 
expenditure at very low incomes comprises a high share of cereals while 
processed food, including convenience products, dominates food demand at 
high incomes. 

Engel’s law on its own implies that income elasticities for food commodities 
decrease with rising income. When we treat food as an aggregated commodity 
this means that the income elasticity becomes less than one when household 
income exceeds some threshold. At the disaggregated level, Bennett’s law 
implies that income elasticities for some commodities such as livestock products 
are larger than for staples. Food commodities can be both normal goods with 
positive income elasticities as well as inferior goods with negative income 
elasticities depending on the country’s and household’s level of income. While 
staple foods are usually necessity goods, they can also turn into inferior goods at 
higher levels of income. For poorer households and in lower income countries, 
livestock products are luxury goods with an income elasticity above unity so that 
their consumption increases more than proportionally with income (Cirera and 
Masset, 2010). As income elasticities for all food types fall with income, Engel 
curves show a tendency to flatten out over time, and reach a saturation level at 
least for aggregate food demand (Chai and Moneta, 2010b). Estimates of income 
elasticities over time show a decrease in elasticities for all commodity groups as 
expected (Yu et al., 2004) and hit a saturation point where income elasticities 
cease to fall (Cirera and Masset, 2010). Table A2 in the supplementary materials 
gives income elasticities for food items for selected countries. 
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Table 2: Conditional food budget shares types in different countries in 2005 

Food type Country type 

 
Low-income Middle-income High-income 

Cereals 0.23 0.12 0.09 

Meats 0.13 0.17 0.12 

Fish 0.06 0.04 0.04 

Dairy 0.08 0.10 0.07 

Oils & Fats 0.05 0.03 0.01 

Fruits & Vegetables 0.18 0.15 0.10 

Other Food 0.15 0.21 0.37 

Beverage & Tobacco 0.12 0.19 0.21 

Source: Muhammad et al. (2011). 

 

 

Figure 3. Consumption shares for food commodities with raising per-capita income in 
US$ in GTAP-sector definition by Britz and Roson (2019), AIDADS. 

Note: Simulated of budget shares with estimated parameters at mean sample price, not CGE model 
results. 

Source: Britz and Roson 2019. 
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2.1.2 Demand for energy services 

More complex models of energy demand do not represent the demand for 
fuels or electricity symmetrically with the other commodities, but instead 
construct a household production model for energy services, e.g. transportation 
services as a function of vehicles and fuel. The modelling of the demand for 
energy services is thus even more challenging compared to food, as there could 
be technical change effects in these household production functions, in addition 
to income effects. An example of this is the introduction of electric vehicles which 
may change the demand for electricity even if incomes remain unchanged. In 
section 3.3 below we describe some examples of energy service demand models 
which highlights the complex income effects in energy consumption and some 
estimated elasticities.  

Here we give a illustrative historical record of energy use. Figure 4, taken 
from Jorgenson et al. (2013, Fig. 3.3), shows the energy consumption share in 
total U.S. personal consumption expenditures, which rose during the oil shocks 
of the 1970s, then fell rapidly in the 1980s and increased again in the mid-2000s. 
Although these changing shares are mostly driven by price effects, there are  also 
non-price effects that are due to technical change, income effects and 
demography. In most demand systems, changes that are not price related are 
attributed to income effects instead of a change in preferences that would be 
analogous with the biases of technical change in production functions.   

 

 

Figure 4. U.S. energy expenditure share of Personal Consumption Expenditures and 
relative price of energy 

      Source: Authors’ calculations based on Jorgenson et al. (2013, Fig. 3.3). 
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2.1.3 Comment on necessities and luxuries 

While the income elasticity below unity is well documented for food, there are 
surprisingly few other categories where such an Engel's law holds. Kaus (2013) 
and Seale and Regmi (2006) estimate income elasticities for 9 consumption 
bundles using a sample of countries across a broad spectrum of development.2 
Table 3 shows income elasticity estimates for selected countries over aggregate 
commodity types and at two points in time, 1996 and 2005. The only two 
categories that were found to be necessities are clothing and footwear, and to 
some extent, education. Still, at a range between 0.8 and 1.0, the income 
elasticities for these categories are much higher than for food. 

Goods with income elasticities greater than unity are often referred to as 
luxury goods. This is misleading as income elasticities greater than unity are 
observed for the majority of goods and services. The highest income elasticities 
can be observed for services and recreation (Kaus, 2013; Seale and Regmi 2006). 
Furthermore, as mentioned above, even for food, the income elasticity can exceed 
one for some income ranges. On the other hand, Seale and Regmi (2006) report 
declining income elasticities for all broad categories in their study. The strongest 
decline in income elasticities with income can be observed for categories with 
high initial values, i.e. recreation and other services. 

This heterogeneity of goods within broad categories of consumption among 
different countries can make comparisons difficult and results hard to interpret. 
At the same time, aggregation of commodity groups also hides the heterogeneity 
of expenditure behavior between different income groups, although this is less of 
a problem for models working with single representative households. In 
addition, reporting of consumption expenditures can be problematic in the case 
of consumption from own production (see section on food above) or public 
provision of services (e.g. education and health), which vary significantly across 
countries. We should also note that functions that obey the axioms of consumer 
theory impose restrictions on the income elasticity parameters in terms of the 
Engel aggregation where the weighted sum of the income elasticities (marginal 
budget shares) must be equal to 1. If there are some necessities then there must 
also be some income elastic commodities.  
  

 
2 In both studies, energy is not a separate category, but included in housing or transport 
categories. Caron, Karplus and Schwarz (2017) estimate Engel Curves for detailed 
household energy commodities in China. 
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Table 3: Income elasticities of aggregated commodity groups for selected countries and 

different years 

Commodity type Malawia Vietnam Mexico United States 

 
2005 1996 2005 1996 2005 1996 2005 

Food, beverages 
and tobacco 0.82b 0.74 0.78b 0.59 0.65b 0.09 0.35b 
Clothing & 
footwear 0.97 0.88 0.97 0.85 0.97 0.82 0.96 

Housing 1.08 1.25 1.07 1.19 1.07 1.15 1.06 

House furnishing 1.06 1.18 1.05 1.14 1.05 1.12 1.05 

Medical care  2.42 1.67 1.60 1.35 1.29 1.24 1.21 

Education 0.93 1.01 0.93 1.01 0.92 1.01 0.91 
Transport & 
communication  1.25 1.22 1.20 1.17 1.15 1.14 1.13 

Recreation  1.33 2.20 2.11 1.45 1.38 1.28 1.25 
Other 2.50 1.73 1.62 1.36 1.30 1.25 1.21 

Notes: aNo data available for Malawi for 1996. bUnlike the 1996 data, the 2005 aggregated “food, 
beverages and tobacco” category includes restaurant and catering expenditures as well and 
therefore leads to higher income elasticities with respect to food than in 1996 (Muhammad et al., 
2011). 

Source: Seale and Regmi (2006); Muhammad et al. (2011). 

2.2 Sources of data and elasticity estimates  

A good estimate of demand parameters requires a large amount of data. Most 
current income and price elasticity estimations based on international data rely 
either on national aggregate data from the International Comparison Project 
(ICP) (as shown in Table 3 and A2) or are estimated directly through GTAP 
national data. The ICP is led by the World Bank and, since 1968, collects global 
price and expenditure data, which are then made comparable across countries 
using purchasing power parities (Seale and Regmi, 2006). The latest collection 
period in 2011 includes data for 199 countries (World Bank, 2015).  

2.2.1 Income elasticities 

Reimer and Hertel (2004) find that estimating income elasticities from GTAP 
national data leads to very similar results compared to ICP-based estimates when 
looking at a classification that divides total consumption into ten commodity 
groups with only a single aggregate food group. Therefore, for the standard 
GTAP model, income elasticities are directly estimated from GTAP data (and not 
ICP data) by first estimating an AIDADS demand system for 10 commodities, 
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whose parameters are then used as targets to calibrate the CDE demand system 
of the standard GTAP model (Hertel and van der Mensbrugghe, 2016). 

Yu et al. (2004) estimate income elasticities separately for cereals, livestock 
products, fish, horticulture and vegetables, and other food using ICP data for 
1985. Both Seale and Regmi (2006) and Muhammad et al. (2011) estimate income 
elasticities for the same food groups as well as oils and fats, beverages and 
tobacco, and additionally disaggregate livestock products into meat, dairy, and 
eggs, using more recent ICP data for 1996 and 2005, respectively. The ICP data 
have some general well-known problems when used to estimate consumption 
functions, including data quality issues in low-income countries as well as 
underreported home-produced food (Seale and Regmi, 2006). Moreover, typical 
Western African staple foods, such as cassava, are recorded in the vegetable food 
commodity group, which can lead to wrong conclusions regarding the budget 
share and demand elasticities of vegetables (Muhammad et al., 2011). 

2.2.2 Price elasticities 

There is no systematic, global disaggregated dataset of price elasticities, 
similar to the problem for income elasticities. Muhammed et al. (2011) and Seale 
and Regmi (2006) estimated own-price elasticities simultaneously with income 
elasticities, using ICP data. Table 4 gives their uncompensated own-price 
elasticities, which show that the richer the country, the smaller the reaction to 
price changes. Food is the most inelastic commodity group across all countries 
and years but, in general, the own-price elasticities fall with rising income. Note 
that medical care remains very price elastic in low-income countries, that is, it 
has features of a luxury good, indicating access barriers for poorer people. 

When econometric estimates of price elasticities are not available, they could 
be derived through simple calibration. Muhammad et al. (2011) give an overview 
about different ways to calculate either the uncompensated or the compensated 
price elasticity from income elasticity and data on consumption expenditures. 
These calculations often make use of the dependency between price and income 
elasticities in the linear expenditure system developed by Frisch (1959) (see 
section 3). The uncompensated own-price elasticities in the GTAP model for 
example are calculated based on GTAP data with the estimated income 
elasticities discussed above, average budget shares and the Frisch index (see 
Hertel and van der Mensbrugghe (2016) for the formula; see section 3 and also in 
the Appendix, eq. 6b, for more information on the Frisch index). Together with 
the estimated income elasticities, these calculated price elasticities are then used 
to calibrated the CDE demand system of the standard GTAP model. 
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Table 4: Uncompensated own-price elasticities of aggregated commodity groups for 

selected countries and different years 

Commodity type Malawi Vietnam Mexico United States 

 
2005 1996 2005 1996 2005 1996 2005 

Food, beverages 
and tobacco -0.601** -0.62 -0.573** -0.49 -0.474** -0.07 -0.254** 

Clothing & 
footwear -0.71 -0.74 -0.71 -0.72 -0.708 -0.69 -0.707 

Housing -0.792 -1.05 -0.787 -1 -0.781 -0.97 -0.778 

House furnishing -0.775 -0.99 -0.773 -0.96 -0.77 -0.94 -0.768 

Medical care  -1.78 -1.4 -1.175 -1.13 -0.949 -1.04 -0.89 

Education -0.685 -0.85 -0.682 -0.85 -0.675 -0.85 -0.668 
Transport & 
communication  -0.92 -1.02 -0.883 -0.98 -0.844 -0.95 -0.826 

Recreation  -0.97 -1.84 -1.551 -1.22 -1.011 -1.08 -0.92 
Other -1.83 -1.45 -1.184 -1.14 -0.951 -1.04 -0.891 

Source: Seale and Regmi (2006); Muhammad et al. (2011).  

There are many econometric estimates of demand functions for specific 
products or groups. There is, for example, a big set of studies for electricity and 
gasoline income and price elasticities (e.g. those reviewed in Cao et al. 2016). 
Unfortunately, there has been no systematic collection and processing of these 
estimates for use in CGE models. 

2.3 Aggregation of commodity groups and households 

The variety of analyses undertaken with CGE models call for demand systems 
with flexibles aggregation structures. This may include having different number 
of commodities in the demand systems compared to the supply side. Models that 
adhere closely to both the National Accounts and Input-Output accounts have to 
reconcile their different classifications within the model.  

An example of the latter is Jorgenson et al. (2013, section 2.3.6) where the  
consumption function is based on household surveys and scaled to the 
classification in the U.S. Personal Consumption Expenditures (PCE) in the 
National Accounts while the production functions are based on Input-Output 
commodities3. National Accounts are based on purchaser prices that include 

 
3 There are two levels of reconciliation. One is that the PCE in the National Accounts is a 
comprehensive measure that includes imputations and owner-occupied housing whereas 
household surveys are limited to out-of-pocket expenditures. The second is that each 
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trade and transportation, while IO data is at factory gate prices. A bridge matrix 
provided in the official benchmark IO tables is used to link the two categories. 
For example, expenditure on “Clothing” given by the consumption function is 
associated with the commodity output of Apparel manufacturing, Trade, 
Transportation and Personal Services. Motor vehicles purchased is supplied by 
these industries: Motor Vehicle manufacturing, Used goods, Trade and 
Transportation. We observe that these bridge matrices change over time in the 
historical data but this is not addressed in any CGE model we know of. 

Whether or not different classifications are used, one might wish to have more 
disaggregated commodity groups for  industrial sectors than for households, and 
this requires the use of transition or bridge matrices. The ENVISAGE and GEM-
E3 models, for example, use a bridge matrix to link consumption categories to a 
broader number of produced commodities (van der Mensbrugghe, 2018; Capros 
et al. 2013). For example, transportation demand would be allocated to fuels, 
vehicle maintenance, purchased transportation services – categories that may be 
identified on the production side of the model. (More examples of energy 
services demand are given in Section 3.3.) One may use an explicitly nested 
function, like in iPETS (see Section 3.3), or simply use a constant bridge matrix, 
implying no substitution between commodities within a consumption category. 

A different kind of problem arises because of the aggregation of households 
into a single representative agent, as it is usually done in most CGE models. 
Indeed, aggregate consumption depends on many factors beyond aggregate 
income and prices, such as demographics (e.g., age structure or family 
composition), level of urbanization and cultural traditions (e.g., preference for or 
against consuming certain types of food), as discussed by Pollack and Wales 
(1981), Lahiri et al. (2000), and O'Neill et al. (2012). 

There are two distinct channels, through which population affects the 
economy: one is the scale and the other is the composition. The effects of 
population size on the scale of consumption demand are considered by many 
models using an aggregate consumption function, and many would also 
incorporate projections of labor supply accounting for the age structure. These 
representative agent functions ignore the variance between individuals and 
households. Only a few models explicitly link the composition of consumption 
demand to the demographic composition of the population (e.g. iPETS, O'Neill et 
al., 2012, Jorgenson et al. 2013).  

A simple method to disaggregate total consumption is “household 
downscaling” (Melnikov et al., 2017). Other authors have used household level 

 
item in the PCE is composed of a few input-output commodities. For the U.S., one may 
find this bridge for the 2002 benchmark in the Survey of Current Business (Oct 2007, page 
40). 
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data to disaggregate the endogenous aggregated consumption to different 
household types and income groups in a post-simulation calculation (Rausch et 
al., 2011). Jorgenson et al. (2013) use an aggregate demand function that explicitly 
includes variables for demographic composition and income distribution in each 
year of their projection. A more detailed representation of different household 
income groups is clearly desirable if modelers are interested in the welfare effects 
of policy measures or other exogenous shocks such as climate change, since not 
only expenditure patterns but also the heterogeneity in production factor 
ownership determines the distributional impacts (Hertel et al., 2010; Rausch et 
al., 2011). 

3. Modelling of consumption in current CGE models 

Implementing a model that recognizes the full complexity of household 
consumption behavior has proved challenging. The tractable demand systems 
used in many CGE models capture some essential price and income effects but 
cannot completely depict the non-monotonic dynamics and the full range of 
cross-price elasticities. We surveyed 28 CGE models and their choice of 
consumption functions. The results are summarized in Figure 5 (full details in 
Appendix Table A1). The bars in the figure represent a count of demand systems, 
where some models are included more than once if they allow for more than one 
demand system. Ten models employ the (nested) constant elasticity of 
substitution (CES) formulation, 9 use the linear expenditure system (LES), and 6 
the constant difference in elasticity (CDE). Only 3 models use the more flexible 
AIDADS, while two single region models use a translog or AIDS.  
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Figure 5. Demand systems used in surveyed CGE models 

Source: Model documentation and responses to survey of participants of the 2018 OECD/GTAP 
workshop. 

In practice, income effects can be flexibly modelled in two ways: (1) through a 
flexible functional form, or (2) by varying the parameters of a simpler demand 
system over time. Updating parameters allows any change in income elasticity  
but amounts to exogenous shifts in preferences such that a welfare analysis 
across time is no longer possible. Similarly, flexibility with regard to price effects 
can be achieved either through the functional form directly, or by introducing 
nested structures (usually CES nests). Figure 5 reports the share of models that 
use a demand system with adjustments to the parameters when calibrating a 
baseline (such as adjusting share parameters, subsistence level consumption, 
income elasticities).  

3.1 Review of common consumption functions 

In this section, we summarize the main functional forms used so that we can 
be explicit about which parameters are estimated or calibrated, and about which 
ones are being adjusted dynamically. We discuss the trade-offs between 
desirable features of a demand system – non-homotheticity, flexibility (more 
cross-substitution possibilities), aggregability (over household types), 
conformability (valid over the whole domain of possible prices), ease of 
disaggregation into sub-groups, and parsimony. We hope modelers will consider 
trying alternative approaches and, to this end, we discuss some features in 
greater detail in the Appendix. In Figure 6, we group models by their properties 
and the number of parameters, as a function of the number of commodities 

0 2 4 6 8 10

AIDADS

CDE

(E)LES

(nested) CES

Count of models

with parameter adjustment without parameter adjustment unclear



Journal of Global Economic Analysis, Volume 5 (2020), No. 1, pp.  63-108. 

 
 
 

79 

 

identified (n). This simple count does not report the loss of free parameters due 
to constraints such as shares adding to unity. Homothetic functions are those 
with unit income elasticities. 

 

 

Figure 6. Overview of functional forms with n goods. 

Note: “pars” denote number of parameters in a demand system without considering restrictions. 

Source: Authors construction. 

The main equations of the functional forms indicated in Figure 6 are 
summarized below. We use the following notation: 

U = utility; E(p,U) = expenditure function 
ci = consumption of good i  
pi = price of good i;    p=vector of prices 

i i

i

M p c=  = total expenditure 

wi  = expenditure share of good i 
np = number of parameters  

M

i  = income elasticity 

i  = own price elasticity 

ij = uncompensated cross-price elasticities.  

A more detailed discussion of the various functions, and the models which use 
them, can be found in the Supplementary Material Appendix A1.  

1 Constant elasticity of substitution (CES) 

Homothetic Non-Homothetic

CD
n pars
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Second-order 
flexible price 

effects

Second-order 
flexible income 

effects
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QUAIDS
n(3+n/2) pars

AIDADS
3n pars

LES
2n pars CDE

3n pars



Journal of Global Economic Analysis, Volume 5 (2020), No. 1, pp.  63-108. 

 
 
 

80 

 

1 1 1 1

1 1 2 2 ..t t t t t nt ntU c c c


   
    

− − − − 
= + + + 
  

    (1) 

      = elasticity of substitution, i share parameter 

1M

i =          (2) 

1

1

( 1)i i
i

j j

p

p

 

 

 
 



−

−

−
= − +


 

2 2np n= −   (for a nested structure) 

2. Linear Expenditure System (LES) or Stone-Geary 
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3. Constant differences of elasticities (CDE) 
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i  = the expansion parameter 

1i i = −  = substitution parameter 
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4. An Implicitly Directly Additive Demand System (AIDADS) 

ln 1
1

u

i i i i

u u
i

e c

e Ae

  + − 
= +  

        (7) 

     i  = commitment (subsistence) consumption, ,i i    are parameters 

( ' )

1

3 1

i
i i

i

u

i i
i u

M p
c

p

e

e

np n

 


 


−
= +

+
=

+

= −

       (8) 

5. Basic Translog 
1

( ln ln )
( )

k M k A kw B p B M B A
D p

= + − +      (9) 

     wk = vector of expenditure shares of household type k 

     Ak = vector of 0-1 demographic indicators of k 

     B = matrix of cross-price share elasticities;   BM= income coefficients 

     BA = matrix of demographic coefficients   

( ) 1 lnMD p B p= − + ;  MB B=  

1
2

~ ( 3)np n n+  

6. EASI (Exact Affine Stone Index) 
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k

iw   = expenditure share of good i for household k 

     Ak = vector of 0-1 demographic indicators of k 

     ln ln 'k ky M p w= −  = real total expenditures 
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, , , ,ri ki ki ki jib C D B  are parameters to be estimated 

The Cobb-Douglas (CD) function has just n parameters to be estimated and is 
often used to depict investment and government demand in CGEs (see section 5 
below), but none of the models reviewed here use it for household consumption. 
The most common formulation is the nested CES, which, excluding the common 
substitution elasticity, has n parameters set in the process of calibration to 
expenditure values. This is because CES is a homothetic function (with unit 
income elasticity). Therefore, if more complex income dynamics needs to be 
modelled, some share parameters have to be varied exogenously, for example, to 
reproduce income elasticities estimated empirically.   

The LES is characterized by 2n parameters and implies fixed marginal budget 

shares. Its i parameters express commitment (also often termed subsistence) 

consumption. The parameter values needed for benchmarking can be calibrated 

either on the basis of income or on own price elasticities. Constant ( i ) and slope 

( i ) terms can be estimated simultaneously during calibration. Some modelers 

also use the Frisch index (the ratio of total to discretionary income) (as discussed 
in the Appendix, eq. 6b). Schuenemann and Delzeit (2019), however, caution that 
simply using Frisch parameter values from the literature could lead to 

unrealistically high commitment shares. On the other hand, if the i  parameters 

are small, the behavior of a LES is not substantially different from that of a Cobb-
Douglas with income and own-price elasticities close to unity. To improve the 
modelling of the non-commitment consumption, LES can be combined with CES 
sub-nests. 

In order to ensure plausible behavior when the population is changing, the 
commitment terms need to be defined on a per-capita basis. With growing 
income, the progressively lower incidence of the commitment term leads to 
increasing income and price elasticities, at least if the constant term is positive. In 
order to better capture the non-linear Engel curves found empirically, the LES 
parameters should then be adjusted. While some models scale up the 
commitment term with population, some other models opt for not updating the 
marginal budget shares. 

The CDE has 3n parameters to estimate, so that both income and own price 
effects can be determined during calibration. However, as we can see from the 
elasticity formulas (6), calibrating the parameters to empirical elasticities is not a 
trivial process. For example, the CDE in the GTAP model is calibrated to 
estimated income elasticities, but not to empirical own-price elasticities (Hertel 
and van der Mensbrugghe, 2016). The own-price elasticities used to calibrate the 
substitution parameter are calculated using estimated income elasticities 
following Zeitsch et al. (1991), which rely on the direct additivity of the LES 
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(equation 3). In the CDE, like in the LES, income elasticities stay constant for 

given parameters. Modelers could then adjust the expansion parameters ( i  in 

eqs. 5 and 6) so as to make income elasticities change over time.  
Without additional adjustments to the parameters, the above three most 

commonly used forms cannot capture non-linear Engel curves, which motivated 
the adoption of more general functional forms, among which the AIDADS, 
which can be conceived as a generalization of the LES. AIDADS offers second 
order flexibility with regard to income effects. In the form in eq. (8), the income 
elasticity vary logistically. Calibration for a large set of commodities is not easy, 
as the system is either underdetermined (if it is only calibrated to income 
elasticities) or overdetermined (if calibrated simultaneously to income and price 
elasticities). Reimer and Hertel (2004) suggest that a maximum of ten 
commodities might be the practical limit for AIDADS, because of computational 
complexity and the need to preserve a property of implicit additivity. However, 
Britz and Roson (2019) have shown that, under certain conditions, and with some 
adjustments to reconcile consumption categories, this limit can be overcome.   

The above functions are not suitable for depicting close substitutes such as 
different energy carriers or different types of meats. Currently, introducing CES 
sub-nests seems to be the preferred option. For example, one solution is 
extending the LES with a nested CES demand system for the non-subsistence 
consumption (e.g. in the OECD’s ENV-Linkages model). The AIDADS in Britz 
and Roson (2019) also uses CES sub-nests. 

Consumption price elasticities have received less attention from the CGE 
modelling community, compared to income elasticities. One reason might be that, 
at the high sectoral resolution of CGE models, the long-term baseline is 
dominated by income effects, and price effects play a minor role. This might also 
be reflected in the common choice of the LES and CDE, which give no or limited 
space to cross-price effects. However, one should note that many policy impacts  
are driven primarily by price effects. This  point is discussed further below. 

Second order flexible functional forms with regard to price effects, but with 
only first order income effects, such as the translog or AIDS, are used in 
econometric analysis but are uncommon in CGE models. As can be seen in Table 
A1, they are nonetheless used in a few single-country models. The B matrix in eq. 
9 gives the full set of cross-price elasticities. However, this means there is a large 

number of parameters ( 1
2

( 3)n n +  in the specification of (9), which does not 

include demographic terms), meaning that the number of commodities which 
could realistically be taken into account during the estimation process is 
somewhat limited. The element BA in (9) allows for the existence of different 
household types having different consumption patterns even when facing 
identical prices and having the same income levels. The aggregate share demand 
vector, derived by summing over all household types, allows a natural way to 
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include demographic projections (Sup. Appendix eq. 12). A major drawback for 
these flexible functions is that one must either impose global concavity on the B 
matrix, or be aware that the function may not be conformable for prices that 
substantially deviate from those of the sample period (because, e.g., they 
generate shares outside the (0,1) range). In practice, these functions are combined 
with sub-nests and, for consistent aggregation, the sub-nests must be specified in 
terms of homothetic functions.  

QUAIDS is another type of function, which would give full flexibility with 
regard to both price and income effects, but has not been used in any reviewed 
CGE model considered here. The EASI has also not been used in any CGE model 
directly, but has been used by Caron et al. (2017) to calibrate the dynamic income 
effects in their LES function. 

3.2 Special features of food demand in CGE models 

In Section 2.1, we noted how diets in developing countries are converging 
towards patterns of rich countries – greater variety and more meat and dairy 
products. Modelling this convergence process will be key for establishing the 
baseline paths for global food consumption. 

While the desirable features of demand systems such as non-homotheticity 
apply to all types of commodities, modelling the dynamics of food demand 
requires an even greater flexibility in terms of reaction to income and prices. This 
is because food is a true “necessity” and not the typical aggregate normal good. 
It may be both a normal and an inferior good, income elastic and inelastic, and 
thus it needs to be modeled such that a rich set of income and price elasticities 
could be reproduced. Long-term baselines of food consumption should also 
include the impact of various specific drivers such as the introduction of 
supermarkets and refrigeration.  

The first challenge when modelling food demand dynamics in aggregate 
models is the reaction to income changes. Income elasticities differ not only 
between countries at different development stages, but also between households 
at different income levels and between different types of food as noted in section 
2. This means that the aggregation of food demand is problematic as food 
demand is not only a function of aggregate income, but also of income 
distribution (Cirera and Masset, 2010). The typical regional household in CGE 
models is an aggregation of all (richer and poorer) households within a region 
that in some cases can even be a whole continent. Blundell and Stoker (2005) 
show that demand of individual households can only be correctly aggregated in 
the case of linear Engel curves, which would imply asymptotically homothetic 
preferences and contradicts both Engel’s and Bennett’s laws. 

Furthermore, most demand systems used in CGE models cannot simulate 
saturation of food demand, that is, when income elasticities for food approach 
zero as people become richer. Indeed, many of the common demand systems 
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cannot accommodate for changing income elasticities. AIDADS has 
endogenously varying income elasticities, but saturation effects are limited.  

The construction of a realistic baseline for food consumption thus requires: (1) 
a detailed set of income and price elasticities for different food commodities, and 
(2) a demand system and utility function flexible enough to be calibrated to these 
elasticities and to allow for sufficient Engel flexibility. 

The most commonly used demand systems in CGE models only partly 
consider the specific features of food demand. The LES, for instance, can be 
calibrated to varying income elasticities of different food types and for different 
household groups in the base year, but cannot reflect changing preferences and 
consumer behavior in the dynamic case. The fact that the implicit income 
elasticities eventually approach unity is especially problematic in the case of 
staple food and inferior goods. Indeed, Yu et al. (2004) find that the LES leads to 
an over-estimation of household food demand growth in regions where incomes 
are rising rapidly but remains quite accurate in regions where income is growing 
modestly. Our comparison of the unadjusted LES and CDE demand systems 
with the AIDADS in Section 4 below illustrates the magnitude of this over-
estimation bias.  

To avoid these problems, some modelers calibrate food demand patterns to a 
predetermined path such as a convergence to high-income diets. In the EPPA 
model, for example, household demand is calibrated in a way that developing 
countries’ consumption patterns converge to those of industrial countries 
through a reduction in aggregate food consumption, as well as dietary patterns 
changing according to Bennett’s law (Lahiri et al., 2000). This is done by 
progressively changing the substitution elasticities between food and non-food 
commodities and making the food consumption share dependent on per-capita 
income growth between periods (Paltsev et al., 2005). While this form of 
calibration allows for capturing food demand dynamics related to income 
changes, price induced changes are sometimes neglected, but could be 
considered alongside income effects by iterating over the baseline path (Lahiri et 
al., 2000)4.  

In a nested system, the substitution elasticities in the different nests determine 
the implicit price elasticities of food demand (Valin et al., 2014). Sometimes, 
however, this can lead to implausible price behavior. Some models combine the 
LES and CES formulations. For example, the Future Agricultural Resources 
Model (FARM) by the USDA, has a top nest for aggregated food categories 

 
4 Models that allow TFP rates to differ by industry, or have limited resource factors, will 
generate paths of relative prices that change significantly over time; these would have 
price effects on consumption demand that should be taken into account when calibrating 
to targeted shares. 
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expressed as a LES, and use CES functions for the lower nests. The model is 
linked to FAO Food Balance Sheets (FBS) by updating the food commodity rows 
in the SAM with FBS projections. The calibration of parameters in both LES and 
CDE models must obey the adding up condition and unless they are adjusted 
over time, they cannot reflect the potential saturation of food demand.  

In the G-RDEM model, Britz and Roson (2019) estimate  an AIDADS system 
with nine non-food sectors and eleven food categories using detailed ICP data 
for food. For the latter, they map the 34 original ICP food categories to the GTAP 
agri-food sectors. The parameters of these functions are not adjusted over time 
and the performance of this system is illustrated in section 4.2. So far, only the 
modified AIDADS (MAIDADS5) has been employed to generate saturation of 
food demand for regions with high income levels (Gouel and Guimbard, 2018). 
However the system does not appear to have been adopted in CGE models so far 
(Corong et al., 2017). 

3.3 Special features of Energy Demand  

Energy demand can be modelled like demand for other goods, and this is 
indeed the case of most models listed in Table A1. More than half of these 
models use nested CES, while others use alternative formulations (LES, CDE or 
flexible functions) and some models use a combination of different functions 
(AIM and Imaclim-R). 

Some authors, however, have argued that the demand for energy is not driven 
by the desire to consume it directly, but rather indirectly, through the 
consumption of the services it provides. This calls for a different modelling 
approach. Based on historical data for the UK, Fouquet (2014) highlights two 
stylized facts regarding various energy services (lighting, passenger transport, 
domestic heating, etc.): (1) the income elasticities follow an inverse U-shaped 
curve through time, while (2) the price elasticity is normally U-shaped. This 
suggests a saturation effect in per capita energy consumption, which is 
challenging to model using simple functional forms. Whether or not developing 
countries will replicate this inverse-U pattern and the date at which the 
saturation will occur are still major uncertainties. As depicted in Figure 2, energy 
consumption in rich countries has become income inelastic (like food), meaning 
that demand systems with homothetic preferences will likely overstate future 
energy consumption (O’Neill et al., 2012; Caron et al., 2017). 

Regardless of the chosen demand system (LES, CES, etc.), a nested approach 
allows us to represent the consumption of energy services provided by fuels and 
associated durable goods, in contrast to assuming that utility increases with 

 
5 The modified form replaces the subsistence term (𝛾 ) in eq. (9) by a function that 
depends on utility. 
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direct fuel and electricity consumption. We discuss below four modelling 
approaches, selected from models listed in Table A.1 for their methods to derive 
energy demand from the consumption of energy services, and were sufficiently 
documented. The different approaches described here are not alternatives, but 
rather complementary, each one of them having its pros and cons. Some models 
specify the links between energy consumption and the stock of durable goods 
providing the energy services, while other models introduce a saturation effect 
by imposing a budget constraint related to energy consumption. Faehn et al. (this 
issue) provide a more exhaustive description of methods to model household 
transportation, buildings, industry energy demand and the role of technology, 
while this section discusses the link between the final demand for energy and the 
modelling of the consumption of other goods. 

We first give an example with the EPPA model (Paltsev et al., 2005b) which is 
based on a nested series of CES functions (Figure 7). Aggregate consumption is a 
CES function of non-transportation consumption and transportation in the top 
tier. Non-transportation consumption is an aggregate of energy and  non-energy 
bundles. Transportation is an aggregate of purchased transportation and own 
transportation (OWNTRN); OWNTRN is an aggregate of vehicle fuels (TROIL) and 
other_own; other_own is an aggregate of vehicles (TOTHER) and operating costs 
(TSERV, which includes vehicle maintenance, insurance, etc.). In this 
representation, transportation consumption is further determined by two budget 
constraints: households expenditures on own-supplied transport is set as a share 
of total expenditure, while expenditure on fuels for vehicles is set to a share of 
total expenditure on refined oil products. 

 
Figure 7: CES nested structure of the EPPA model. 

                      Source: Authors own construction. 
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Cars sales (TOTHER) are calibrated with data of the GTAP motor vehicle sector, 
which is a part of a non-energy intensive manufacturing sector in EPPA. The 
shares of expenditure on own-transportation and vehicle fuels are calibrated 
using various national surveys. Vehicle operating costs are supplied by a service 
sector, aggregating the following GTAP sectors: sales maintenance and repair, 
insurance and business services. 

The elasticities reported in Paltsev et al., (2005b, tables 4 and 5) are: 0.5 
between aggregate consumption and transport; 0.4 between the consumption of 
various energy goods; [0.3;0.7] between liquid fuels and other inputs; 0.5 
between services and car sales for own-transport.  

A second example of linking energy consumption to other goods is to be 
found in the GEM-E3 model, in which private energy consumption for 
transportation and buildings are linked to a stock of durable goods (Capros et al. 
2013). Private consumption is expressed through a LES (eq. 11), with a distinction 
between consumption of nondurables HCFV (set nd), and a stock of durables 
SHINV (set dg). The stocks of durables for transportation and heating are linked 
with non-durable goods, needed to operate the stocks (fuels and services for 
maintenance). The variable D represents the usage of the stock and is determined 
by the cost of operating the stock (PHCFV is an index of fuel, maintenance and 
other costs) relative to the consumer price index PCI. The consumption of the 
linked energy good is thus determined by the multiplication of the stock and its 
usage rate (subject to a minimum usage rate). The demand for the stock of 
durable goods depends on the price of the durable good itself as well as the 
(expected) user costs. 
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Nesting durable goods with the energy requirement makes the substitution 
between capital and energy sources explicit. The determination of energy 
efficiency of durable goods through specific rules or bottom-up models allow for 
a separate accounting of the services provided and their energy content. In the 
EPPA model, an increase in cars sales (TOTHER) can bring about more energy 
efficient vehicles. In the GEM-E3 model, households can invest in energy saving 
technologies, to decrease the D ratio linking durables to fuel consumption. 

 
Alternatively, a saturation effect in consuming energy services can be 

modelled by the introduction of dedicated budget constraints. In our third 
example, the Imaclim-R model (Waisman et al., 2013) uses a LES function, where 
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one of the Ci consumption items is mobility services, Smob, as shown in eq. 13. 
Mobility services are a CES function of four modes: air transport, terrestrial 
public transport, private transport by cars and non-motorized transport. The 
energy content of each modes is derived from reduced form of bottom-up 
models. 

 ( ) ( )i mob

c i i mob mob

i

U C S
  = − −      (13) 

 ( , , , )mob air public car nonmotorS CES pkm pkm pkm pkm=    (14) 

Besides the budget constraint for consumption expenditures, there is a time 
travel constraint, which sets a ceiling on average daily travel time as estimated 
by some empirical studies (Zahavi and Talvitie, 1980). Each transportation mode 
is then associated with a travel time efficiency parameter, which influences the 
degree of substitutability within the CES function. This parameter depends on 
the average speed of each mode and the gap between mobility demand and the 
capacity of the network, so that congestion effects can be taken into account.  

 
Whether or not energy consumption is represented through the services it 

provides, the parameters of the demand system can be adjusted over time, to 
make projections more realistic and consistent with given scenarios. For example, 
Schafer and Jacoby (2003) calibrated the elasticities of the EPPA model on the 
basis of a detailed transport model, considering vehicles as stocks. In the 
Imaclim-R model, alternative settings for the income elasticities of the demand 
for vehicles influence the travel time of road transport. The AIM/CGE model 
illustrates how an explicit representation of technology allows us to improve 
long-term energy demand projections. In this model, household energy demand 
can be represented in two ways. In the first, a generic LES differentiates the use 
of private cars from other sources of energy consumption, with fuels demand 
nested into a logit function. In the second way, energy consumption is driven by 
a set of technologies, selected from among hundreds (Fujimori et al., 2014). In 
this latter approach, the share (SHDVj,l) of each technology l providing an energy 
service j is expressed as a logit of annualized investment and O&M costs (CDVj,l), 

with elasticities ,j l   and shares bj,l: 
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      (15) 

Each technology l is associated with an energy content per unit of the services 
it provides. The share parameters bj,l are updated yearly, so as to reflect the 
availability of technologies for different time horizons and in different scenarios.  
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4. Projection of consumption demand and model comparisons 

We reviewed the commonly used consumption functions in section 3, all of 
which have terms for price and income effects, with some functions having terms 
for demographic and household composition effects. We next discuss how the 
parameters of these functions are set and possibly modified over time in the base 
path by various modelling groups. In section 4.2, we compare how different 
demand functions in the same CGE model can lead to different baseline paths. 

4.1 Setting parameters and adjusting over time 

We may divide the approaches for setting parameters into two groups. One is 
to keep the price and income parameters unchanged and only allow exogenous 
variables for demographic effects to change over time. This could be referred to 
as a “complete demand system approach” where changes in demand shares over 
time are delivered by endogenous income and price effects. The second approach 
changes the demand system parameters exogenously over time, which we call 
the “exogenous parameter adjustment approach.” Different modelling teams use 
different levels of sophistication for parameter adjustments.  

A complete demand system that endogenously projects demand with rising 
incomes is preferable from a theoretical point of view, as it provides consistent 
effects for small and large shocks to income. The rapidly rising incomes over 
decades affects consumption demand in the same function as it would do for 
small income changes, possibly due to policy shocks. If these are rank-1 functions, 
then it is the same elasticity. Rank 2 or rank 3 functions would provide more 
flexibility but still assume that the functional form and parameter values 
observed for the sample period is valid for much higher income levels. There are 
serious barriers to using flexible demand systems such as AIDS or translog – 
difficult data requirements and effort to estimate them for a large set of countries 
or a large set of commodities, in addition to the challenges discussed in Section 3.  

A potential limitation of such complete demand systems is that stable 
preferences are assumed. However, one may think that preferences change over 
time in a way that cannot be ascribed to income effects, for example, changes in 
diet or vehicle use due to environmental concerns. If the demand system does 
not explicitly capture demographic effects (e.g. aging, urbanization), unlike the 
example in eq. 9,  then one also needs additional flexibility. In such cases, one 
may explicitly prefer not to use a demand system with fixed parameters, but this 
then requires one to explicitly address preference changes. 

Given the difficulties in specifying and calibrating a flexible demand system 
that give reasonable consumption demands for large changes in incomes, many 
modelers have resorted to the second approach of exogenous parameter 
adjustments to create a dynamic baseline. There are two distinct modifications 
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under the heading of “parameter adjustments”: those accounting for population 
changes and those accounting for growth in per-capita income.  

Accounting for population growth is undertaken in many models. We 
illustrate this with an example from the dynamic recursive DART model. Here 
the commitment minima of the LES are recalibrated after each time step 
according to population growth. This adjustment can lead to smaller or larger 
commitment minima with respect to the base year. This is especially evident in 
Sub-Saharan Africa, because of its fast population growth. For other regions, the 
changes required are generally small as illustrated in Figure 8 (taken from 
Schuenemann and Delzeit, 2019) which compares the impact of this recalibration 
for a period of 23 years and three selected regions. For each region a pair of lines 
show the decreasing subsistence minima shares in total consumption as incomes 
rise. One line refers to a fixed commitment term, whereas the other line refers to 
a recalibrated one. While the differences are quite large for Sub-Sahara Africa, 
such that the recalibration prevents a fast convergence to homothetic preferences, 
in regions with fast income growth like China, and regions with low initial 
commitments, the impact of the recalibration method is relatively small. 

 Few models take into account other demographic aspects beyond population 
size, but in the iPETS model (O'Neill et al., 2012), household surveys for 
representative countries are used to derive relationships between consumption 
and characteristics such as urbanization and household size. Their share 
parameters in the CES functions (α in equation 1) are adjusted exogenously, on 
the basis of income and demographic projections. Implementing this effect into 
higher order demand systems might be more challenging. 

 

 

Figure 8. Share of subsistence consumption in total consumption in standard    
LES and with recalibration according to population growth for selected regions 

between 2007-2030 in the DART model 

Source: Authors’ calculations using DART-BIO 
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The second type of parameter modification considers income effects. It 
involves changing parameters of the consumption function, such that, for 
instance, the expenditure shares are adjusted such that the consumption patterns 
align with what are judged to be reasonable shares for future income levels. In 
practice, this can be achieved by iterating share parameters and income levels 
from a baseline, or calibrating to exogenous GDP projections (e.g. iPETS, Ren et 
al, 2018 and GEM-E3, Rey Los Santos et al., 2018; see also Fouré et al. in this 
volume for GDP calibration in long-term baselines). In iPETS, this is done by 
iterating over the baseline path. Starting with a guess path of per capita income, 
preference parameters are adjusted in each period and the model is solved, 
which generates a different path of income. As the underlying within-period 
utility function is a CES, this implies homothetic preferences within a period. 
That is, the consumption impact of policy changes or other shocks are captured 
by a function that has a unit income elasticity. 6 

Chen et al. (2015) implement a recalibration method for commitment 
consumption shares in the LES demand of EPPA. After each time step in the 
recursive-dynamic model, they are recalculated so that the regional income 
elasticities match the observed values and do not converge to one (see Appendix 
eq. 6). As the authors note, this procedure implies that welfare indexes can only 
be computed within each period, and present values cannot be estimated. 

Caron et al. (2017) use a similar method to update parameters of a LES 
demand system for China, based on household survey data. In a first step, values 
in an econometric model that resembles the flexible Exact Affine Stone Index 
(EASI) are estimated, providing variable income elasticities (in contrast to Chen 
et al. 2015, where constant income elasticities are used for the recalibration of the 
EPPA model). These variable elasticities are then used to update the LES 
preference parameters for a baseline in C-REM, a global model with sub-national 
detail for China. As the baseline with updated preferences implies a different 
income, this updating strategy is repeated until convergence, as in O'Neill et al. 
(2012). Caron et al. (2017) notice that assuming homothetic preferences 
significantly overestimates energy demand and emissions in the baseline.   

One advantage of the method of adjusted parameters is an easier integration 
of demand estimates for specific sectors when they are modelled in greater detail. 
For example, Keramidas et al. (2020) split the motor vehicle sector into electric 
and conventional vehicles. Demand for electric vehicles can barely be observed 

 
6 In principle, an adjustment of preference parameters can also be made in the 
counterfactual scenarios if the modellers are willing to specify an alternative income 
effect exogenously. One may wish to do that if the main aim is to quantify, say, 
household energy use. However, changing the utility function between baseline and 
counterfactual scenarios prevents meaningful welfare analysis. 
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in historical data, yet electric vehicles are expected to increase their market share 
in the future, so calibrating to historic data could be misleading. Adjusting 
parameters of less complex demand systems might therefore be a good option to 
integrate more realistic data, possibly based on expert judgement or detailed 
partial equilibrium modelling.  

While the adjustments above correct for the homothetic assumption, the 
WTO's GTM model also allows income elasticities to change along the baseline in 
their CDE demand system (WTO 2018, Appendix C3). The CDE expansion 
parameters for ten aggregate sectors (  in eq. 6) are adjusted on the basis of the 

growth in GDP per capita. To do this, the estimated expansion parameters 
provided in the GTAP database are first regressed against GDP per capita, using 
a spline regression. The expansion parameters are then adjusted in the baseline 
such that they converge to their fitted values. Similarly, the MAGNET model, 
which also uses a CDE demand system, also allows for adjustments of CDE 
parameters to avoid unrealistically high levels of food consumption (Woltjer et 
al., 2014).  

Let us summarize the advantages of making the exogenous adjustments. One 
can use simple homothetic functions such as the CES and make adjustments to 
get expected baseline shares, and this would be reasonable for simulations 
involving small shocks to income. The non-homothetic LES system involves 
slightly more complex adjustments to get desired baseline shares but allows for a 
richer set of income elasticities. The AIDADS function is flexible and does not 
impose a fixed income elasticity. It has been implemented in G-RDEM (Britz and 
Roson, 2019) and ENVISAGE (van der Mensbrugghe, 2018). (The MAIDADS has 
a commitment term that is a function of utility, but that model has only been 
used in partial equilibrium models to date.) 

There seems to be no commonly accepted guidelines on how to generate 
expenditure shares that can be used for exogenous adjustments of consumption 
parameters. We noted the example in the GTM model of an estimation across 
countries to determine expenditure shares, assuming that poorer countries will 
follow consumption patterns in developed countries (also Britz and Roson 2019 
and Roson and van der Mensbrugghe 2018). There are observed differences 
between countries at similar incomes, variation that might be due to cultural 
differences. Such differences could persist and should be recognized when 
making projections of baselines based on these income adjustments.  

4.2 A comparison of the performance of 4 different consumption functions in a 2050 
baseline: CDE, LES, AIDADS and AIDADS with CES-sub-nests 

We show here how projections of the commodity composition of consumption 
differs when using three different functional forms (CDE, LES, AIDADS) for 
household demand in the same model, G-RDEM (Britz and Roson, 2019). For the 
LES and AIDADS, commitment terms are defined on a per-capita basis and 
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therefore scale automatically with population changes, but no adjustments to the 
parameters are made with respect to income, as discussed in section 4.1. 

The default G-RDEM setup uses an AIDADS with sub-nests for energy (as in 
GTAP-E) and agri-food. These CES-sub-nests define the aggregate demand for 
clusters and allow us to model higher substitution between products within the 
nest. All baselines are based on identical GDP and population projections, from 
the Shared Socio-Economic Pathway 2 (Riahi et al. 2017) until 2050. G-RDEM is 
implemented in the CGEBox modeling platform (Britz and Van der 
Mensbrugghe, 2018) and includes a specific variant of the GTAP-AEZ model 
drawing on GTAP-AGR (Lee, 2005 and Keeney and Hertel, 2005) and GTAP-E 
(McDougall and Golub, 2007). A further difference from the GTAP standard 
model (Hertel and Tsigas, 1997) is that domestic and import shares are not 
differentiated between the Armington agents. All other features of G-RDEM are 
used in this exercise, namely: (1) differentiated sectoral productivity growth, (2) 
debt accumulation generated by trade imbalances, (3) variable saving rates 
influenced by population and income dynamics, (4) time-varying and income 
dependent industrial input-output parameters, and, as usual in recursive-
dynamic CGEs, (5) capital accumulation.  

What is new here compared to Britz and Roson (2019) is that the budget 
shares for investment and government demand are income dependent, on the 
basis of a cross-sectional analysis undertaken with GTAP data. However, given 
that household consumption makes up for the largest share of final demand and 
that investment and government tend to be focused on a few commodity groups, 
we find that this new feature has limited consequences on the model results.  

More important are changes introduced to the GTAP-AEZ setting7, where 
land-supply elasticities are now calibrated to match crop land expansion under a 
business-as-usual scenario (FAO, 2018). This implies stronger increases in land 
rents as well as somewhat higher prices for agri-food commodities. 

We simulated three variations of G-RDEM with LES, CDE and an AIDADS 
without sub-nests and compared the results to the default version, i.e. an 
AIDADS with CES sub-nests. The parameters of the CDE are taken from the 
GTAP data base and the LES income elasticities are calibrated from the CDE 
parameters. In these alternative cases we calibrated the TFP parameters so that 
they all reach the same global GDP. Table 5 below reports differences in output 
quantities and prices at the global level compared to the default G-RDEM 
configuration. 

As could be expected, the differences for the LES functional form are the 
largest ones. The LES also generates a considerably higher demand for agri-food 
products and lower demand for certain types of services, especially recreational 

 
7 Details can be found in Britz and Escobar (2020). 
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activities and dwellings. Prices of services are generally lower, reflecting the 
larger change in endogenous TFP growth that is needed to match the GDP 
projections from SSP2. Land prices bid up dramatically (+235%) in the LES case 
such that, in relative terms, labor (-8%) and capital (-25%) become cheaper. 

In the CDE, differences are quite pronounced for the agri-food sectors. It is 
interesting to see that CDE leads to a somewhat higher global demand for 
primary agriculture compared to the LES. When we compare a flat AIDADS with 
the default system of sub-nests for energy and agri-food, some sectors are quite 
different (last column). Without these nests, demand for the sector “Petroleum, 
coal products” is about 12% higher while electricity is reduced by 15%. 

These comparisons show the big role played by the choice of consumption 
functions in determining relative prices, including factor prices, the output 
structure and factor allocation of the simulated economy. We have only 
simulated the baseline path here, modelers have to consider the separate 
differences of policy impacts. 

Table 5: Relative differences in global sectoral output in 2050 under SSP2 for different 

functional form for final demand, no sub-nest, compared to AIDADS with sub-nests 

 LES CDE AIDADS 

 Quant Price Quantity Price Quantity Price 

ALL sectors 8% -5% 11% -10% 0% 0% 
Paddy rice 8% 236% 20% 383% -1% -8% 
Wheat 5% 185% 11% 264% 0% -4% 
Cereal grains nec 11% 204% 14% 305% 0% -4% 
Vegetables, fruit, nuts 9% 206% 5% 214% 0% -5% 
Oil seeds 9% 181% 10% 253% 0% -5% 
Sugar cane, sugar beet 15% 167% 26% 291% 0% -3% 
Plant-based fibers 11% 167% 3% 161% 0% -4% 
Crops nec 2% 156% 14% 290% 0% -4% 
Cattle,sheep,goats,horses 102% 41% 64% 28% -8% -2% 
Animal products nec 97% 48% 37% 34% -21% -4% 
Raw milk 121% 54% 88% 32% 0% -1% 
Wool, silk-worm cocoons 99% 14% 57% 13% -1% -1% 
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 LES CDE AIDADS 
 Quant Price Quantity Price Quantity Price 

Forestry 22% -5% 28% -30% -1% 1% 
Fishing 125% 58% 78% 20% 0% 0% 
Coal 2% -17% -14% -27% -17% -2% 
Oil -3% -20% -17% -38% 11% 5% 
Gas 1% -17% 3% -29% -14% -6% 
Minerals nec 16% -7% 17% -17% 0% 1% 
Meat: cattle,sheep,goats,horse 147% 9% 96% -2% -2% 0% 
Meat products nec 166% 18% 88% 6% -1% -1% 
Vegetable oils and fats 47% 98% 53% 96% 0% -3% 
Dairy products 125% 19% 72% 13% 0% 0% 
Processed rice 32% 141% 51% 249% -3% -5% 
Sugar 39% 105% 51% 170% 0% -2% 
Beverages and tobacco products 79% 41% 37% 55% 0% -1% 
Textiles 71% 12% 33% 8% 0% 0% 
Other food processing, feed use8 194% 42% 84% 50% -20% -1% 
Ohter food food processing, other 70% 52% 41% 63% -1% -1% 
Wood products 15% -11% 14% -18% 0% 1% 
Paper products, publishing 14% -9% 12% -14% -1% 1% 
Petroleum, coal products -3% -15% -24% -23% 12% 3% 
Chemical,rubber,plastic prods 12% -4% 10% -8% 0% 0% 
Mineral products nec 15% -14% 15% -19% 0% 1% 
Ferrous metals 16% -17% 21% -25% 0% 1% 
Metals nec 17% -15% 26% -29% -1% 1% 
Metal products 16% -17% 18% -25% 0% 1% 
Motor vehicles and parts 12% -16% 14% -21% 0% 1% 
Transport equipment nec 27% -19% 28% -29% 0% 1% 
Electronic equipment 11% -21% 18% -30% -1% 1% 
Machinery and equipment nec 15% -20% 19% -30% -1% 1% 
Manufactures nec 14% -12% 11% -18% 0% 1% 
Electricity -1% -15% -11% -19% -15% -1% 
Gas manufacture, distribution 39% -14% 32% -23% -5% 1% 
Water 48% -16% 37% -20% -1% 1% 
Construction 9% -14% 14% -18% 0% 1% 
Trade -18% -12% 14% -15% 0% 1% 
Transport nec 9% -9% 10% -12% 0% 1% 
Sea transport 29% -16% 27% -20% 1% 1% 
Air transport 17% -14% 23% -19% -1% 1% 
Communication 19% -18% 20% -26% -1% 1% 
Financial services nec 5% -19% 27% -30% -1% 1% 
Insurance -8% -19% 4% -28% -1% 1% 
Business services nec 2% -16% 13% -26% -1% 1% 
Recreation and other services -24% -12% -9% -16% 0% 1% 
PubAdmin/Defence/Health... 15% -12% 1% -21% -1% 1% 
Dwellings -37% -23% 1% -23% -1% 1% 
Source: G-RDEM simulation 

  

 
8 The two Other Food Processing sectors split out intermediate use of “Other food processing” in 
animal production, i.e. the production of feed concentrates. 
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5. Investment and Government 

Besides consumption of households, final demand includes investment and 
government purchases. In this section, we briefly discuss how models typically 
represent investment and government demand, in terms of aggregate as well as 
composition. Additional information can be found in the Appendix. The 
modeling of exports and imports is discussed by Bekkers et al. (this volume). 

5.1 Commodity composition of investment demand 

The investment component of final demand (the I in C+I+G+X-M) is typically 
very high during periods of rapid growth, such as the spurts of the East Asian 
tigers. Currently, the investment share of GDP in China exceeds 40%, and 
exceeds 30% in Indonesia and India. Modelling the commodity structure of 
investment demand is thus almost as important as modeling the commodity 
structure of consumption. The modelling and projection of savings and 
aggregate investment is discussed in Fouré et al. (this volume), here we focus on 
the commodity structure.  

Unfortunately, the literature on structural patterns of investment is scarce 
compared to the huge one on aggregate investment and savings. In principle, 
any demand system discussed in section 3 could be employed. However, we do 
not detect in our sample of models any use of higher order demand systems for 
investment, so that Leontief and CES (including Cobb-Douglas) functions 
dominate (Figure 9). Some models project industry specific investment rather 
than aggregate investment for the entire economy (see Supplementary Appendix 
A2). In this case, instead of a vector allocating aggregate investment, there is a 
bridge matrix allocating each industry’s investment to individual commodities. 
A change in the relative growth of sectors then changes the composition of 
aggregate investment, even if the matrix is fixed.  

Of all the models reviewed here, most models seem to fix the share 
parameters for the projection period. This is understandable, given that there is 
no available information comparable to that of income elasticities for 
consumption. Indeed, there is little discussion and no consensus about the form 
of an investment commodity allocation function. Since historical data about the 
composition of investment demand highlights that patterns are not stable over 
time, there is a strong argument for exogenously adjusting the composition 
shares. For example, intellectual property, including software, constitutes a 
rising share in total investment demand (see appendix A2). Of the global models 
surveyed in this article, C-GEM adjusts the share parameters for China to 
converge to investment patterns currently observed in other developed countries 
(Li et al., 2019), using an approach that mirrors the adjustment of share 
parameters on the consumption side. In the latest G-RDEM version (Britz and 
Roson 2019), the share parameters of the CD-demand system are shifted, 



Journal of Global Economic Analysis, Volume 5 (2020), No. 1, pp.  63-108. 

 
 
 

98 

 

depending on per capita income. Due to limited historical data on investment by 
commodity in many countries, another option is  choosing ad-hoc adjustments 
based on expert judgement. 

 

Figure 7. Demand systems for investment demand. 

Source: Documentation and responses to survey of participants of the 2018 OECD/GTAP 
workshop. 

5.2 Government demand 

Aggregate government demand varies considerably between large economies, 
ranging from less than 10% to more than 20% of GDP (see Supplementary 
Appendix A3 for a more detailed analysis). Differences in government 
consumption levels are either driven by structural differences, that are unlikely 
to change substantially over time, or driven by different accounting principles. 
For example, health and education services are provided by very different 
institutional structures in different countries and affect our view of private 
versus public consumption. In the U.S., for example, education is mostly 
provided by local governments but there is a large private component, which is 
counted inside consumption expenditure.  

There appears to be no systematic relationship between income and shares of 
government consumption. Countries experiencing bigger variations are those 
with radical changes in the political environment. An assumption of a constant 
total government purchases relative to GDP appears reasonable for long-run 
modelling, although a specific treatment might be needed for energy exporters, 
where the government share in GDP often fluctuates widely because of swings in 
international energy prices. 

Several models allocate a constant share of GDP to government expenditure. 
For example, GDyn uses a Cobb-Douglas function that allocates fixed 
expenditure shares to private consumption and government consumption. Some 
other models do not identify an explicit government sector and combine it with 
personal consumption expenditures. The specification of the model of public 
spending and government deficit must be done in a unified manner as discussed 
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by Fouré et al. (this volume). An alternative to allocating an exogenous share of 
GDP to government demand is to set the deficit exogenously and then the size of 
the government will be given by the endogenous tax revenues. 

The composition of final demand for government is not modelled as 
elaborately as private consumption. Leontief, Cobb-Douglas or CES formulations 
are common choices and no model that we are aware of adjusts demand system 
parameters (Figure 10). In the GTAP dataset used by most global models, 
government purchases are predominantly from the "Public Administration, 
Defense, Education, Health" sector (Aguiar et al., 2016), which accounts for 94% 
of all government purchases in the GTAP 9 data for 2011. The commodity 
composition is thus driven by the production function of that sector. The latest 
available release of GTAP 10 (Aguiar et al., 2019) disaggregates this sector into 
three industries (Public administration; Education; Health and social work). This 
change from one to three sectors makes the allocation of total government 
demand more important, in particular if one wishes to incorporate the effect of 
aging on the demand for health and education. 

There is little information in the models’ documentation about the allocation 
of government expenditure. G-RDEM (Britz and Roson 2019) shifts share 
parameters of government demand depending on per capita income, like for 
their investment function.  

  

Figure 8. Demand systems for government demand. 

Source: Documentation and responses to survey of participants of the 2018 OECD/GTAP 
workshop. 
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6. Observations and Recommendations  

6.1 Conclusions from current state-of-the-art practices 

We summarize here the main lessons we can draw from reviewing the 
literature and a large number of CGE models. Let us first note that this has been 
a challenging task due to the large differences in availability and detail in model 
documentation. In particular, the benchmarking process or the dynamic 
parameter adjustments are often not well documented. We believe that it would 
help other modelers to understand the results better and to learn other methods 
if the authors describe their adjustments in greater detail. 

 Given data and expertise needed, only a few modelling teams have opted to 
embody flexible demand systems in their long-run simulation exercises (cf. 
Jorgenson et al., 2013 for a single country CGE estimated using cross section 
household data; Roson and Van der Mensbrugghe (2018) and Britz and Roson 
(2019) for global models using country panel data). The majority continues to 
stick to simpler demand systems such as the CES or LES that were originally 
conceived for comparative static models. While CES nests under a LES or CES 
top level system offer flexibility to better depict cross-price effects, the 
homothetic character of the CES and the linear Engel curves of a LES cannot 
address the observed non-linearity of income effects. 

Therefore, most of the models using CES, LES or CDE functions change 
parameters exogenously to yield plausible Engel curves. Caron et al. (2017), Chen 
et al. (2015), O'Neill et al. (2012), and Schuenemann and Delzeit (2019) provide 
good examples. This avoids implausible quantity and price changes from using 
constant calibrated parameters, as emphasized by Yu et al. (2000; 2004).  

In Table 5, we compare projections using different demand systems in an 
otherwise unchanged model, supplementing the comparisons of Yu et al. (2004), 
Savard (2010), Bouët et al. (2014), Britz and Roson (2019). We believe that further 
testing of other functional forms would be very useful for the modeling 
community. We recognize, however, the high cost of doing so and suggest a 
collaborative effort to reduce learning costs.  

 While simple demand systems have fewer data requirements and therefore 
are easier to calibrate, they typically cannot capture relevant income and cross-
prices effects. Several models considered here implement a simple solution by 
using a hierarchical approach with CES sub-nests e.g. for food commodity 
groups or energy demand to introduce more flexibility with regard to cross-price 
effects. The alternative to this are second-order flexible demand systems such as 
AIDS used in Sommers and Kratena (2017) and Savard (2010) or the translog 
function in Jorgenson et al. (2013). These demand systems require an n2-order 
number of parameters and therefore are typically, at least in the context of CGE 
modeling, estimated only for a limited number of consumption bundles at the 
top tier. For consistent aggregation, sub-tiers must be of the homothetic type. A 
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major obstacle to using these flexible systems is the lack of household and price 
data to estimate them for many countries.  

For long-run analysis, we consider a top-level system with non-linear Engel 
curves combined with well-chosen and parameterized CES sub-nests as a robust, 
and relatively easy to implement, option. However, more empirical effort should 
be devoted to test such an approach on actual data. Currently, the parameters of 
the CDE demand system for up to 65 sectors shipped with the GTAP 10 data 
base are derived from the estimation of an AIDADS function with ten categories, 
drawing on demand prices constructed from the GTAP data base directly (Hertel 
and van der Mensbrugghe 2016). This data set could be used for comparing 
nested systems, for instance, an AIDADS combined with CES sub-nests with a 
nested or non-nested QUAIDS, or other functional forms which combine second-
order and third-order flexibility, as well as demand systems that operate with 
parameter adjustments to induce expenditure shares evolving with income. 

We noted how some models use a transition matrix to link the commodities in 
the consumption function with the commodities specified in the production side 
of the model. One reason for doing this is that the number of commodities 
identified in the production side is typically greater than the numbers of 
consumption commodities or services. On the other hand, products can enter 
multiple consumption items, which could be characterized by different income 
and price elasticities. 

In particular, models specializing in energy issues must take into account that 

households are not simply consuming energy goods but actually complex energy 

services. These services may use different energy carriers as intermediates in 

combination with durables to produce energy services, e.g. cooking, heating, 

washing or transportation services. Just as in the formal production sector of the 

economy, home production should also allow for technological change, and thus, 

efficiency changes. This is particularly important when assessing energy or 

climate policies. However, even this more complex formulation is not sufficient if 

one wants to model saturation effects in the demand for energy services 

(Fouquet, 2014).  

For the composition of final demand going to investment, most global models 
use relatively simple Leontief or CES demand functions. Without adjustments of 
parameters, these do not capture changing investment patterns over time, e.g. 
shifts towards a higher investment expenditures for software and licenses. Yet, 
currently only very few global model perform parameter adjustments. 

For government purchases, most models employ simple assumptions like 
total expenditure expressed as a constant share of GDP. This is because the 
modeling of the public sector in CGE frameworks is uncharted territory. More 
work is needed to adequately reproduce with the models facts like the volatility 
of public expenditure in resource-based economic systems, or the dependence of 



Journal of Global Economic Analysis, Volume 5 (2020), No. 1, pp.  63-108. 

 
 
 

102 

 

consumption patterns from demographic (and political) characteristics of the 
countries. 

6.2. A research agenda for improving final demand representation 

We note four distinct challenges to improve the modelling of final demand in 
multi-sector models. First, data, in particular estimates of elasticities at the 
desired commodity detail. Second, the choice of a functional form, balancing the 
various trade-offs among desirable features of a demand system (non-
homotheticity, flexibility, aggregability, conformability and parsimony). Third, 
the adaptation of empirical estimates to parameters of the model. Fourth, 
validation of the model.  

Data on consumption, especially household level data, is the necessary 
condition for achieving improvements in consumption modelling. Data is 
needed to identify income and price elasticities, as well as behavioral differences 
across household types. Identifying heterogenous behavior would allow 
projecting the baseline more accurately by incorporating information like age 
distribution in the population, urbanization, and migration. Identifying 
differences across income groups would also allow an analysis of distributional 
impact of policies.  

Better estimates of consumption functions could be realized by considering 
more commodities, more regions and household types, and by adopting 
functions that can adequately capture the complex, non-monotonic income 
relationships.  

The task of choosing functional forms would be greatly aided by more 
comparative studies, such as discussed in section 6.1, possibly extended to 
compare the models’ responses to common policy shocks.  

For the challenge of calibrating parameters to incorporate external projections, 
it would be helpful to get a systematic comparison between models making use 
of parameter adjustments and  models with complex demand system.  

There are specialized demand models for other commodities that are not often 
included in CGE models such as health, tourism and information technology that 
are now major expenditures. A catalog of these should be very useful. 

Modelling teams seem to be using their own sources of information for expert 
projections or linking with their own detailed (bottom-up or partial equilibrium) 
models9. Dixon et al. (2013), for example, describes how the MONASH model 
incorporates the work of specialist forecasting organizations. A catalogue of such 

 
9 Delzeit et al. (this volume) discuss the linking of top-down and bottom-up models on 
the production side. Many of the issues there would be relevant for demand side models 
too. 
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works should be valuable to the CGE modelling community, paving the way for 
sharing information, which makes model comparisons more meaningful.  

Finally, let us raise the need to address the issue of social welfare 
measurement when there are different household types. This appears especially 
problematic when a model accounts for the (possibly endogenous) switching of 
people from one household category to another, as a result of policy shocks or 
economic development.  
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