
 

 

 

 

GGIG Graphical Interface Generator 

Programming Guide 

 

 

Wolfgang Britz, August 2010 

 

 

 

- Version March 2021 - 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 2 

 

 

 

 

The following user guide documents the outcome of a collaborative effort of University Bonn 

and the author. Larger parts of the Java code underlying GGIG had been developed over the 

years in the context of projects related to the CAPRI modelling system, which received 

considerably funds from the EU research framework programs. Following the general policy 

in CAPRI, the GGIG pre-compiled code can be used for other scientific projects as well 

without charge. 

 

The author would like to acknowledge the contribution of Alexander Gocht, vTI 

Braunschweig, to the CAPRI GUI coding efforts. All errors remain with the author. 

 

http://www.capri-model.org/gui.htm


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 3 

Content 

Overview .................................................................................................................................... 7 

Current applications of GGIG .................................................................................................. 11 

An overview on the GUI .......................................................................................................... 12 

The interface generator ............................................................................................................. 13 

Tasks ..................................................................................................................................... 13 

Mapping controls setting to GAMS ..................................................................................... 13 

Basic concept of the control definition file .......................................................................... 14 

Tool name, logo, default directories and background color ................................................. 16 

Worksteps ............................................................................................................................. 17 

Tasks ..................................................................................................................................... 18 

Use of filters for exploitations .......................................................................................... 19 

Controls ................................................................................................................................ 22 

Possible fields for controls ............................................................................................... 22 

Dependencies ................................................................................................................... 23 

Type of controls ............................................................................................................... 25 

Tab .................................................................................................................................... 26 

Separator ........................................................................................................................... 27 

Panel ................................................................................................................................. 27 

Text ................................................................................................................................... 28 

Checkbox .......................................................................................................................... 29 

Filesel / Dirsel .................................................................................................................. 30 

fileselDir / dirselDir ......................................................................................................... 31 

Singelist ............................................................................................................................ 32 

Multilist / MultiListNonZero ........................................................................................... 33 

Radiobuttons ..................................................................................................................... 36 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 4 

Slider ................................................................................................................................ 38 

Spinner ............................................................................................................................. 39 

Table / TableSimple ......................................................................................................... 40 

Layout of the controls on the interface and style options for controls ................................. 43 

Help system .......................................................................................................................... 46 

Help menu items ............................................................................................................... 47 

Tooltips ............................................................................................................................. 47 

Links to PDF documents with bookmarks ....................................................................... 48 

Starting GAMS from GGIG ..................................................................................................... 49 

General interface settings ......................................................................................................... 51 

GAMS and R related settings ............................................................................................... 52 

SVN related settings ............................................................................................................. 52 

Settings linked to the exploitation tools ............................................................................... 53 

Meta data handling ................................................................................................................... 54 

Why meta data? .................................................................................................................... 54 

Technical concept ................................................................................................................. 54 

Exploitation .............................................................................................................................. 56 

Excurse: history of GGIG, CAPRI GUIs ................................................................................. 56 

Execution of tasks via a GamsStarter and GamsThread ...................................................... 58 

Refactoring the mapping part ............................................................................................... 59 

Views as the basic concept ................................................................................................... 60 

Data model ........................................................................................................................... 61 

Client based solution ............................................................................................................ 62 

The geometry model ............................................................................................................. 62 

XML definitions for views ....................................................................................................... 64 

Why a XML definition files for views? ............................................................................... 64 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 5 

The structure of the XML definition files for the views ...................................................... 64 

General comments ............................................................................................................ 64 

Necessary tags for tables .................................................................................................. 65 

Defining the items of the table ......................................................................................... 65 

Additional tags: <subTheme> .......................................................................................... 67 

Additional tags: <defpivot> ............................................................................................. 67 

Additional tags: <defview> .............................................................................................. 68 

Additional tags: <COO> .................................................................................................. 69 

Alternative texts for the dimensions ................................................................................. 69 

Additional tags: <clone> .................................................................................................. 70 

Additional tags: <drop> ................................................................................................... 70 

Further tags ....................................................................................................................... 70 

Filters for the elements in the different dimensions ......................................................... 72 

Attaching long texts and filters to elements ..................................................................... 73 

Includes ............................................................................................................................ 73 

The structure of the GAMS generated gdx files used by the exploitation tools .................. 74 

Loading the data from gdx files ........................................................................................... 74 

Design hints for structured programming in GAMS with GGIG ............................................. 75 

Using information passed from GGIG ................................................................................. 75 

Structure your program by tasks .......................................................................................... 76 

One entry points for run specific settings ............................................................................. 77 

Scenario editor .......................................................................................................................... 77 

Batch execution ........................................................................................................................ 78 

Generate GAMS documentation .............................................................................................. 78 

Background .......................................................................................................................... 79 

Desired properties ................................................................................................................ 80 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 6 

Technical implementation .................................................................................................... 80 

Overview .............................................................................................................................. 81 

Handling of GDX files ......................................................................................................... 82 

Index ......................................................................................................................................... 83 

References ................................................................................................................................ 83 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 7 

Overview 

The GAMS Graphical Interface Generator (GGIG) is a tool to generate a Graphical User 

Interface (GUI) for a GAMS or R project
1
 with five main functionalities: 

1. Generation of user operable graphical controls from XML based definitions. The 

XML file defines the project specific controls used and their layout. The user can then 

interact with the GUI to change the state of the controls. The state of each control 

component such as a checkbox can then be mapped to GAMS code ($SETGLOBALS, 

Set definitions, settings for parameters) or to R statements. It combines hence the basic 

functionality of a GUI generator and a rudimentary GAMS/R code generator. 

2. Generation of GAMS compatible meta data from the state of the control which can 

be stored in GAMS GDX format and later accessed, so that scenario definitions are 

automatically stored along with results. 

3. Execution of a GAMS or R project while passing the state of the control to 

GAMS respectively R as an include file. 

4. Exploitation of results from GAMS runs by providing an interface to define the 

necessary interfacing definitions in text file to load results from a GDX file into the 

GGIG exploitation tools. Note that GDX files can also be generated from R. 

5. Access to a set of GAMS related utilities. This include e.g. a viewer for GDX files, a 

utility to build a HTML based documentation of the GAMS code or a batch execution 

utility. 

GGIG is hence steered with xml-based text file and does not require knowledge in a higher 

programming language 

GGIG was developed to overcome a typical problem when economic models are implemented 

in GAMS. GAMS itself, not at least to ensure platform portability, does not allow for 

graphical user input (cf. Britz and Kallrath 2012). Run specific settings for GAMS need 

therefore to be introduced either by changes to the GAMS project code itself or by adding 

settings of environment variables to the GAMS call. Experienced model users – typically the 

code developers themselves – know how to change run specific settings in the GAMS code, 

                                                 

1
 The code can also be used from inside Java, but that feature is not discussed in the documentation. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 8 

and do so typically quite efficiently. As a consequence, they seldom feel the need to develop a 

GUI steering their GAMS project. The need to invest in GUI development might have even 

decreased as the GAMS IDE now offers some basic functionality often found in project 

specific GUIs, such as starting GAMS, inspecting parameters found in the listing file or 

viewing the context of a GDX file. 

However, a GAMS code only solution for an economic model typically poses a serious entry 

barrier to newcomers for two reasons (cf. Britz 2014a). Firstly, possible users are often not 

familiar with GAMS. But even with some elementary knowledge of the language, they might 

face problems understanding project specific GAMS code making use of advanced GAMS 

features. Secondly, they face the challenge to familiarize themselves with the specific code of 

the project (file structure, symbol names, set elements ...). In order to use the GAMS code for 

applications, a user needs to learn enough to know exactly which specific code changes are 

necessary to implement e.g. scenarios in a given project. Large and/or complex GAMS code 

of projects might basically exclude its usage beyond some core developers. Accordingly, 

institutions or tool developers often observe that promising tools are only used by a few 

specialists, reducing returns to their investment in tool development and maintenance (Nilsson 

et al. 2008, Janssen et al. 2012). Possible other users often shy away from the high learning 

costs and/or fear to generate, analyse and present results based on a black box where it is 

unclear how to enter exactly a scenario and how to access their results. 

It is therefore not astonishing that some tools based on GAMS (and also on other modelling 

languages) have developed their specific GUIs (cf. Britz et al. 2015). These GUIs let the user 

steer the tool with a touch & feel comparable to other programs running on modern windowed 

operating systems. However, writing a GUI for a larger project firstly requires considerable 

programming skills, often not found with the economic modellers themselves. Secondly, 

developing a good GUI design and then to code, debug and maintain a GUI can be a rather 

costly exercise. As a consequence, typically only rather large and well-funded tools have 

found and invested the necessary resources to develop such GUIs. CAPRI and runGTAP 

provide some examples. Such project specific GUIs are typically very powerful, but tend also 

to be too tool specific to be easily modified to fit to another (GAMS) project, and require an 

experienced software programmer for any changes in the GUI layout. 

That renders it inviting to think about generic tools able to generate a GUI which can interface 

to GAMS. The coding effort can then be shared across projects, and user might even reduce 

learning costs if they use similar GUIs for different tools. A well-established example for such 

http://www.capri-model.org/gui.htm
https://www.gtap.agecon.purdue.edu/products/rungtap/default.asp


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 9 

a tool is the “GAMS Simulation Environment (GSE)” by Wietse Dol (Dol 2006). GSE is 

quite general: it incorporates features of an Integrated Development Interface (IDE) as well as 

exploitation features. It is based on specific “tags” introduced in the GAMS code. GGIG is 

certainly not a direct competitor to GSE: GSE offers different functionality and is more IDE 

oriented. It might however be easier to embed some simple steering settings with GGIG into 

an existing project compared to the tag based concept of GSE. GSE was in the past a 

commercial product distributed with a license but can now be downloaded for free, and user 

should first check carefully their requirements and what is offered by GSE or GGIG before 

taking a decision for one the two GUI generators. 

An example of a completely different approach to a GUI for modelling tools offers 

SEAMLESS-IF (Rizzoli et al. 2009) with its focus on component linkage. Based on OpenMI, 

it however requires the development of an OpenMi compatible wrapper around the GAMS 

project itself. Concepts such as the SEAMLESS-IF are therefore probably only suitable for 

larger projects focusing on combining components based on different programming 

languages. Furthermore, SEAMLESS-IF is based on a client/server implementation and 

requires specific software licences for deployment. 

GGIG might hence be seen as a quite simple and easy to use tool to generate GUIs for GAMS 

projects. If all GGIG features are used, it can however host quite complex projects. The new 

GUI for CAPRI built with GGIG offers an example for a rather complex implementation. 

As mentioned above, a second important contribution of GGIG is to mechanize to the largest 

extent the generation, storage and later inspection of meta data underlying a scenario and the 

related result set, overcoming an often-encountered weakness in (economic) models. 

And thirdly, GGIG offers a bridge between the powerful CAPRI exploitation tools and other 

GAMS based models. It draws on the experiences with BenImpact, a Regionalized 

Agricultural Sector Model for Benin (Britz and M’Barek 2003), MIVAD, a hydro-economic 

model for a river basin in Morocco (Heidecke and Heckelei 2010) and the village CGEs 

developed in Advanced-Eval (Britz 2009). These GAMS based models respectively Java 

based GUIs used already before GGIG the CAPRI exploitation tools to inspect model results, 

but did not add any GUI functionalities to also steer their models. The experiences with these 

examples can hence be seen as the starting point for the development of GGIG in order to 

expand beyond a pure, project adjusted implementation of the CAPRI exploitation tools. 

http://www3.lei.wur.nl/gse/
http://www.seamlessassociation.org/index.php?option=com_content&view=section&id=14&Itemid=69
http://www.seamlessassociation.org/index.php?option=com_content&view=section&id=14&Itemid=69
http://www.capri-model.org/gui.htm
http://www.impetus.uni-koeln.de/fileadmin/content/veroeffentlichungen/projektberichte/IMPETUS_Zwischenbericht_2008.pdf
http://www.impetus.uni-koeln.de/en/morocco/livelihood-security/pk-ma-e1.html
http://www.advanced-eval.eu/


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 10 

Some specific skills and eventually serious refactoring of the reporting part of an existing 

model are necessary to benefit from the full functionality of the GGIG exploitation tool. It 

therefore pays typically off to start using GGIG for exploitation from the beginning (the same 

holds probably also for GSE and other GUI generators to be linked to GAMS or R code). But 

at least, no skills in coding in a higher programming language such as Java are necessary to 

define the necessary interfaces between the GAMS project and the exploitation part. The 

latter offers interlinked tables (with selections, sorting, outlier control, pivoting), different 

type of graphs, maps and flow maps. 

Additionally, GGIG features a set of utilities originally developed for CAPRI such as HTML 

based documentation of the GAMS code, a GDX viewer or a batch processing mode. 

The development of GGIG would have been impossible without the continued funding for the 

maintenance and development of CAPRI by the EU Commission, which also let to the 

emergence of the CAPRI GUI and exploitation tools. That code base was the starting point for 

GGIG. I would also like to mention the contribution of Alexander Gocht over the last years to 

coding GGIG. 

The main parts of GGIG are graphically depicted below. At its core stands the GGIG Control 

generator, based on Java code. Based on a XML based definition file provided by the project, 

it generates a project specific GUI which can be operated by the user. The state of these 

controls such as numerical settings, on/off settings or n of m selection can be passed to 

GAMS or R by an automatically generated include file which also contains automatically 

generated meta data. The user can also execute GAMS or R from the GUI. The GUI can 

equally load numerical results and meta data in a specific GDX viewer. The latter supports 

“view definitions”, i.e. pre-defined reports to exploit the results. The details of the different 

elements are discussed below. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 11 

GGIG

Control

Generator

GGIG

Controls and Settings

definition file

Project specific

GUI

User

input

GAMS

include file

GAMS

project code

GAMS

executable

GDX

Exploitation

tools

Meta data

Numerical results

 

Diagram: Overview on information flow in GGIG 

Current applications of GGIG 

Since the first prototype, GGIG has been successfully implemented in a number of projects, 

examples are listed below in chronological order: 

 FarmDyn: a fully dynamic single farm model (cf. Lengers and Britz 2012) 

 A small, spatial multi-commodity model for world trade of cooked and uncooked 

poultry meat with a focus on trade bans related to Avian Influenza, developed in the 

context of the NTM-Impact project (Wieck et al. 2012). 

 A EU wide layer of regional CGEs with a focus on Rural Development measures on 

the second pillar of the CAP, which is now incorporated into CAPRI (cf. Schroeder et 

al. 2014). 

 LANA-HEBAMO: A Hydro-Economic model for the lake Naivasha in Kenya (Kuhn 

et al. 2014). 

 The FADNTOOL project which combines a set of economic tools for simulating 

policy impacts based on the FADN data. 

http://www.ilr.uni-bonn.de/em/rsrch/tools_e.htm#FARMDYN
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9701.2012.01461.x/abstract
http://www.ilr.uni-bonn.de/agpo/rsrch/ntm/ntm_e.htm
http://www.ilr.uni-bonn.de/agpo/publ/techpap/LANA-HEBAMO-documentation.pdf
http://www.fadntool.eu/


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 12 

 A modular and flexible Computable General Equilibrium model CGEBox 

 An Agent Based model for structural change in agriculture, which is realized in 

GAMS, but uses GGIG as its user interface. 

 BW-GLOBAL-FOR, a Multi-Commodity model for wood and wood based products 

(Britz et al. 2014) 

 IFM-CAP by JRC-IPTS, PMP-based single farm models for the EU drawing on the 

FADN data base 

 AGRISPACE, a recursive-dynamic agricultural sector model for Norway 

 PEM by the OECD, a Multi-Commodity model linked to the OECD PSE/CSE data 

base 

 METRO by the OECD, a CGE model with a focus on trade in value added 

 The GLOBIOM model by IIASA 

And last not least, the GUI of CAPRI (Britz 2014b) now is implemented in GGIG. 

An overview on the GUI 

 

https://www.ilr.uni-bonn.de/em/rsrch/cgebox/cgebox_e.htm
http://www.ilr.uni-bonn.de/agpo/rsrch/abmsim/abmsim_e.htm
http://www.ilr.uni-bonn.de/agpo/rsrch/forest/forest_e.htm
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eu-wide-individual-farm-model-common-agricultural-policy-analysis-ifm-cap
http://www.ilr.uni-bonn.de/em/rsrch/agrispace/agrispace_e.htm
http://www.oecd.org/tad/agricultural-policies/39265834.pdf
https://www.oecd.org/tad/policynotes/METRO-OECD-trade-model.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjC_rnEsLzvAhVaAmMBHe7cAM0QFjAAegQIAxAD&url=https%3A%2F%2Fiiasa.github.io%2FGLOBIOM_FABLE%2FGUI.html&usg=AOvVaw0T1eVnCLeTCuufaM40H69M
http://www.capri-model.org/docs/Gui2014.pdf


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 13 

As shown in the example above, the GUI consists a few elements: 

1. A menu bar which allows to change some settings (see the section on general 

interface settings+) 

2. A workstep and task selection panel on the left-hand side where the user can select 

between different tasks belonging to the project. 

3. A right-hand side panel which either shows: 

i. The generated controls, a button panel to start GAMS and a window 

in which the message log from GAMS is shown 

ii. A panel to select data to view and to start their exploitation 

iii. The exploitation tools 

4. A small window in the left lower corner which present a logo. 

Whereas the elements 1. and 3.ii and 3iii. are not project specific, the work steps and tasks 

available in 2. and the controls shown to the user in 3.i. are generated in a project specific 

initialisation file. The details of that file – which is core of GGIG – are discussed below. 

The interface generator 

Tasks 

Tasks are central elements in GGIG. Each control can belong to one or several tasks, and each 

task might have its own GAMS or R process. That allows steering even rather complex tools 

which combine different GAMS or R projects based on one GGIG implementation. Splitting 

up a project into several tasks supports a structured development of the GAMS/R code as 

either separate GAMS/R files with a clear purpose are generated or a GAMS/R file consists of 

blocks which belong to certain tasks. 

When the user selects a task, only the controls belonging to that task are shown to the user, 

easing the handling of the GUI. Tasks can be combined into work steps to further structure the 

work flow in a project. 

Mapping controls setting to GAMS 

Controls are user operable, graphical elements. A few examples are shown below. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 14 

  

  

Diagram: Example of controls generated with GGIG 

In the case of GGIG, these graphical controls are used by the user to define textual and 

numerical settings which in turn define run specific settings for a GAMS/R project. GGIG 

offers five functionalities related to these controls and their interactions with a GAMS project: 

1. It generates the controls from a definition file on a windowed program interface. 

2. It offers the necessary code to intercept user operations on the controls. 

3. It maps the settings of the controls based on the user input to as sequence of GAMS or 

R statements, which can be included into a GAMS/R project to generate a specific run. 

4. It allows execution of GAMS or R. 

5. It offers a GDX viewer which supports the definition of pre-defined reports. 

The overview on the process is shown in the diagram above. 

In order to allow the run specific settings to enter a specific GAMS project, the generated 

include file should define the sole entry point of run specific information. The state of the 

controls – passed to the include file - should hence define all the necessary information for a 

specific run. The GAMS code should accordingly not allow for or require additional changes 

to generate a “scenario”, i.e. a specific run. It is however easy to use a text control in GGIG to 

enter directly the name of another file to include in the GAMS/R code. 

The include file generated by GGIG which reports the state of the controls is overwritten each 

time the user starts the GAMS project. 

Basic concept of the control definition file 

GGIG supports two formats for definitions file: XML based property files or standard Java 

property files. The later are only supported for backward compatibility and should no longer 

be used for new GGIG projects. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 15 

XML property file 

The core of GGIG consists of the control definition file. The XML property file defines the 

controls, tasks, etc. based on XML tags. As the XML file is parsed by a standard Java XML 

parser, these tags can additional by stored in different lines, see example below: 

 

The different tags (or keywords) are discussed in detail below. 

Standard Java property files (deprecated) 

It follows the basic implementation of a property file in Java. Each line thus consists of a key 

– value pair, separated by an equal sign. The definition of the controls is stored in the same 

file along with general settings such as the name of the GAMS project, directories, the user 

name etc.. 

For each control, one line is used. That line comprises all the necessary information to 

generate the control, as well as to store the current setting. 

The control definition file is text based and can hence be edited with any text editor. Most of 

the settings – with the exemption of the definitions of the controls themselves – can also be 

entered by the user via the controls on the GGIG interface. These project independent controls 

are to a larger extent borrowed from the CAPRI user interface. On top, a first rudimentary 

control editor is embedded in the tool. 

Call of GGIG 

In a normal installation, there are two files: 

1. One default file with the control definitions and related default values. That file should 

be typically under version control. 

2. A second file which is installation specific, it will solely store the values entered by 

the user on the interface and will be in the Java generic “ini” format. Its content is 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 16 

updated each time the interface is closed, the next run will re-load the control and 

other setting from that file. Thus, that file should not be under version control. 

A typical call will therefore look like: 

Java Gig.jar project.ini project_default.xml 

Where the first argument relates to the project “ini” file which stores the current user settings 

(it will be automatically updated when the interface is closed). The second argument defines 

the GGIG definition file. It is hence possible to host several GGIG based installations in one 

directory where the jars etc., are stored. 

Tool name, logo, default directories and background color 

The following three XML tags allow setting the tool name, the logo shown on the interface 

and the background colour: 

 

Equally, the icon shown in the task bar can be set 

 

The option dialog comprises tabs for system directories and executables: 

 

 

The default for the directories is “model, res, restart, dat”. The abbreviation are kept for 

legacy reasons. As seen above, additional directories can be added. The XML definition file 

can refer to these settings in the definition of control, e.g. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 17 

 

The “defaultsExe” field adds text fields and file selection button to the tab “GAMS” as shown 

below: 

 

Worksteps 

Worksteps allow to group tasks, and thus represent the top level of structuring actions in a 

tool. The following attributes are possible 

Name  Name of the workstep shown as selectable radio button (required) 

Tasks  List of tasks 

PDFLink Context sensitive link as via a PDF bookmark 

 

The work step selection is based on a set of radio buttons in a panel in the upper left corner of 

the generated GUI. It is not necessary to define work steps in a project. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 18 

Tasks 

The control definition file must define a list of tasks (such as calibrating the model and 

running the model) for the project. 

A task can have its own GAMS or R file to start, its own result directories and its own set of 

controls. Each control can however be shared by several tasks. 

 

The tasks are put in the order as they are defined in the control file on the left-hand side of the 

interface, below the work step panel (if work steps are defined): 

 

The following attributes are possible for a task 

Name  defines the name of task, shown on interface (required) 

gamsFile defines the name of the GAMS project to start (optional) 

resDir  result directory where the results are stored (optional) 

filemask regex string used filter the files shown in the scenario exploitation 

boxes for the task (required) 

incFile  defines the name of include file used by the task (optional) 

gdxsymbol defines the GAMS symbol (set, parameter) to load for exploitation 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 19 

{logical}dim position of the logical dim in gdxsymbol, where logical=region, 

  activity, product, year, scen, dim5..dim9 

filters  filters for scenario input, see below 

xmltabledef task specific view definition file in XML format 

 PDFLink Context sensitive link as via a PDF bookmark 

If no gamsFile,incFile or resDir are given, the general ones defined in the ini-file are used. 

Tasks without a GAMS or R clearly cannot be executed, but they can be used to exploit GDX 

files. That allows to e.g. to explore different parts of data bases. 

Use of filters for exploitations 

Filters are used to 

1. To let the user select from the GDX files which are potentially generated by the task 

based on a specific content selection, .e.g. only files from a specific year 

2. To introduce a filter on the GDX element loaded in the viewer, e.g. to only load 

records for a specific country 

A filter definition consists of 3 fields: 

1. The logical dimension to which it is applied: {region, activity, product, year, scen, 

dim5} 

2. The selection control which is used for the filter 

3. The type of filter: 

a. “Starts_with” or “ends_with” for GDX element filters, i.e. only such 

records will be loaded where the item describing the logical dimension starts 

with one of the selected keys.  

b. “File_Starts_with” will selected input files which match the selection of 

another control, such as in the following example: 

 

In the example above, a control with the same “Data set” is generated, 

comprising the file names found under “%datdir%\*.gdx, and only results files 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 20 

with a name starting with the name of the selected file will be shown in the 

drop-down boxes for scenarios: 

 

Note: the Java program will attempt to locate in the GUI folder a XML file 

with the name of the selected file and copy it to “generated.xml”. That can be 

used to generate from GAMS a file with e.g. regional and product definitions 

matching a specific data base and use <xi:include href=”generated.xml”/> in 

the view definition file to dynamically load these definition into the views. 

c. Otherwise, a pair of integer values which describe on which position of the file 

names the selected key should be found plus either “skip” for only using selecting 

files or “merge” to merge records from the chosen GDXs. 

The screenshot below shows an example generated from the following filters: 

 

The first filter “starts_with” does not affect the file selection, but will affect which records 

from the selected files are loaded in the viewer. In the example shown below, where the filter 

controls fit to the definitions above, only records where the region key starts with “BL” will 

be shown to the users. 

The other two filters will skip files where the base and simulation years do not match the 

selection. In our example, the base year is stored as a two digit key on position 7 and 8, and 

only files with a “04” are in the drop down box for the scenarios. Similarly, only results for 

the simulation year “20” are selected. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 21 

  

Normally, the name of the file will be used to characterize the “scenario”. The “merge” is 

made for the case where several GDX files should be combined and the file name does not 

distinguish model runs. An example offers the downscaling component of CAPRI: it 

produces in separate GAMS run for the same scenario one file for each country which 

comprise rather huge data sets. The “merge” mode allows combining these result sets 

together. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 22 

Controls 

Possible fields for controls 

The necessary information for each control is stored in different tags for each control 

definition file. The controls are put on the interface in the order they are given in the XML. 

The following fields are available: 

Type defines the type of control (required). The different types are discussed below 

in detail. 

Title  defines the description of the control as seen by user (required) 

GamsName defines the name of global settings resp. SET name (optional) 

Value  pre-selected setting(s) (optional) 

Options list of available options (required where applicable) 

Range Min, max, increment, major ticks; or number of rows shown (required where 

applicable) 

Tasks  List of tasks to which the control belongs. If empty, it belongs to all tasks 

Tooltip A tooltip text hovering over the control (optional) 

Pdflink Link to a pdf file and chapter to open on mouse over (optional) 

Selgroups Selection list opened by pop-up menu (see Multilist control) 

Style  Different style options (optional) 

Disable Control is blocked for input – useful to show settings on interface which are 

should be sent to GAMS for a specific task (optional) 

dependsOn Defines inclusive O dependencies to other settings of other controls (optional) 

dependsOnAll Defines AND dependencies to other settings of other controls (optional) 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 23 

Dependencies 

The <dependsOn> and <dependsOnAll> fields allows to define dependencies between 

controls, i.e. under which settings of other controls the current control is visible or enabled. 

The value of these fields comprises a list of trigger control names, and for each trigger the 

possible settings which render the current control visible respectively enabled. The controls 

are separated by a forward slash “/”. The settings for each control are separated from the 

control name by a double point; the settings themselves are separated by comma. The settings 

describe an inclusive OR relation, i.e. the control is shown if one of the listed settings is 

currently chosen. For each trigger control, it can be defined if the dependent control should be 

rendered visible and enabled, and a default value can be set if the control is rendered invisible 

or disabled. 

In the following example, the dependent control is triggered by the control named “Standard 

GTAP model”. Only if the value of that trigger control is “false”, the dependent control is 

enabled. Otherwise, its value is set to “comparative static”. 

 

With the <dependsOn> field, the controls also are checked for inclusive or, i.e. if for one of 

the controls one setting matches, the current control is shown. The following example shows a 

tab which is only enabled if one of the listed farm branches is selected by the user: 

 

The following example disabled a tab if a checkbox titled “GHGs” is not checked: 

 

The <dependsOnAll> field checks that for all controls at least one setting matches. In the 

following example, the panel is only shown if one of the listed farm branches and one of the 

listed crops are selected. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 24 

 

The <dependsOnAll> field can also be used to only show the control if several values from a 

multi-selection control are selected, by listing all necessary combination of the control name 

and the settings, e.g. 

 

In the above case, the panel would only be shown if both the “Arable” and the “Dairy” farm 

branch would be selected, and one of the crops shows is chosen. 

The values for the dependent control on visible tabs are always passed on to GAMS or R, 

even if it is currently not visible (or enabled). That eases writing the GAMS code as all 

$setglobals and sets defined via the interface for any combination of possible control settings 

are still declared. But clearly, the coder should only use these settings in the code if a default 

value is defined. Otherwise, settings from previous runs will be comprised in the include file 

which can neither been seen respectively changed by the user nor have a defined value. 

In order to exclude that control values of invisible controls on active tabs are outputted to 

include, file use the style attribute “noOutputIfInvisible”: 

 

In order to output also the values of controls on currently active tab, use the following 

attribute: 

 

A specific type of dependency provides the population of tables, lists and combo boxes from 

GDX files. In case of such dependencies and a change in the state of the trigger component, 

the dependent component will be rebuilt 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 25 

Type of controls 

The following types of controls are available. The related JAVA swing JComponent is shown 

in bracket. 

Tab   Introduces a new tab on the tabbed plane hosting the controls 

Separator  to structure a pane with control (JLabel in an JPanel with a border) 

Panel   the next controls are shown together on a panel 

Text   to enter a free text (JTextField) 

Checkbox  for on-off type of settings (JCheckBox) 

Singlelist  for 1 of n selections (JList in a JScrollPane) 

RadioButtons  for 1 of n selections (Group in JButton, vertically aligned) 

Filesel   for 1 of n selections of a list of files (JList in a JScrollPane) 

FileselDir for 1 of n selections of a list of files found potentially in sub-directories, 

preceded by a sub-directory lists (two JList in a JScrollPane) 

Multilist  for n of m selections (n=0..m), (non editable JComboBox) 

MultilistNonZero for n of m selections (n=1...m), (non editable JComboBox) 

Slider   for integer value selection from a range of values (JSlider) 

Spinner  for floating or integer value selection from a range of values (JSpinner) 

Table to enter floating point variables in a two or three-dimension parameter, 

comprises pivot possibilities (JTable) 

SimpleTable to enter floating point variables in a two or three-dimension parameter, 

no pivot possibilities (JTable) 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 26 

Tab  

Purpose 

Used to structure the interface by grouping controls on an input pane: introduces a 

new tabbed plane to which controls following are then added 

Applicable fields: 

Title, Tasks 

Control optic: 

 

Remarks: 

1. The user can only see one of the tab pane at any time – care should hence be given to 

keep the number of tabs and the assignment of controls to tabs such that a user can 

easily check all key inputs. 

2. Tab names should be short. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 27 

Separator  

Purpose 

Used to structure the interface, gives a title for the next block of controls and keeps 

them together (top to bottom) 

Applicable fields: 

Title, Value, Tasks 

Control optic: 

 

Example definition: 

 

Panel  

Purpose 

Used to structure the interface, starts a block of controls which are ordered from top 

to bottom. Similar to separator, but not titled. One separator can span over several 

panels. 

Applicable fields: 

Tasks 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 28 

Text  

Purpose 

Allows the user to enter text. Used e.g. to name the output generated by a run. 

Applicable fields: 

Title, Value, Tasks, Style 

Control optic: 

 

Possible value: 

Any text allowed 

User action: 

Edit with keyboard 

Example definition: 

 

Output to GAMS: 

 

Note: 

If the text entered refers to an existing file, it is recommended to use a filesel control 

instead. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 29 

Checkbox  

Purpose 

Used for on/off settings, i.e. in cases where one of two options must be chosen, e.g. 

in cases of project modules which can be used or not (1 of 2). Cannot be used for 1 

of n selections where n > 2 – use a List instead. 

Applicable fields: 

Title, GamsName, Value, Tasks, Style 

Control optic: 

 

Possible value: 

true, false 

User action: 

tick / untick box with mouse 

Example definition: 

 

Output to GAMS: 

 

Note: True / False can be also outputted as ON / OFF to the include file for all 

controls. Use the following attribute: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 30 

Filesel / Dirsel  

Purpose 

Used for 1 of n selections of a list of files respectively directories. That is e.g. 

interesting when the user can choose from a list of pre-existing scenario definitions in 

GAMS files or to select a directory from which different data files are loaded. 

Applicable fields: 

Title, GamsName, Value, Options, Tasks, Style 

Control optic: 

 

Note: Drop down list will appear if the user clicks on arrow. 

Possible value: 

Defined by the file selection string in options field, .e.g 

..\\gams\\pol_input\\cge_*.gms. The file extension fill be automatically removed from 

the items. 

User action: 

tick / untick one of the selection possibilities with mouse 

Example definition: 

 

Output to GAMS: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 31 

fileselDir / dirselDir  

Purpose 

Used for 1 of n selections of a list of files respectively sub-directories, potentially from 

sub-directories. That is e.g. interesting when the user can choose from a list of pre-

existing scenario definitions in GAMS files, or to define sub-directories from which 

data will be loaded 

Applicable fields: 

Title, GamsName, Value, Options, Tasks, Style 

Control optic: 

 

Note: Drop down lists will appear if the user clicks on arrow. 

Possible value: 

Defined by the file selection string in options field, .e.g 

..\\gams\\pol_input\\cge_*.gms. The file extension fill be automatically removed from 

the items. 

User action: 

tick / untick one of the selection possibilities with mouse 

Example definition: 

 

Output to GAMS: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 32 

Singelist  

Purpose 

Used for 1 of n selections. Used in cases where more than 2 mutually exclusive 

values for a setting are available. 

Applicable fields: 

Title, GamsName, Value, Options, Tasks, Style 

Control optic: 

 

Note: Drop down list will appear if the user clicks on arrow. 

Possible value: 

Defined by options field 

User action: 

tick / untick one of the selection possibilities with mouse 

Example definition: 

 

Output to GAMS: 

 

Note: 

 The user cannot deselect, i.e. one of the options is always active. 

 The selection possibilities can also be loaded as a set from a GDX file,  



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 33 

. Note that a dependency should be added to ensure that options are properly 

updated if the user changes the file on the interface. 

 Instead of using a GDX file defined via another control as shown above, the 

file name can also be entered as fix. 

 Longtexts attached to the set-elements can be also loaded from the GDX file, 

use the style attribute “longtexts”, i.e. <style>longTexts:true</style>. 

Multilist / MultiListNonZero  

Purpose 

Used for m of n selections, i.e. in cases where features are not mutually exclusive. 

Multilist allows m = 0, i.e. also empty selection. MultiListNonZero requires m > 0, i.e. at least 

one element must be selected. 

Applicable fields: 

Title, GamsName, Value, Options, range, Tasks, Style 

Control optic: 

  

Notes: 

 left hand side: range=0  right hand side: range = 3 

 Drop down list will appear if the user clicks on arrow, and number of elements > 

range and range<>0 

 A negative range will generate a number of rows, and define endogenously the 

number of columns such that all selection possibilities are visible, as seen below. 

 

Possible values: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 34 

Defined by options field 

User action: 

tick / untick box fields in the control with mouse 

Example definition: 

 

Output to GAMS: 

 

Selection groups  

The multilist control features a pop-up menu which without selection groups only allows to 

clear the selection or to select all items (see below). 

 

The control definition files can define selection groups which allow for groups of items to be 

selected, added or removed from the selection. Each selection group starts with a forward 

slash “/” following by the name of the group. The items are and the next selection group are 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 35 

then comma separated as shown below. Commas can be skipped if the next item is on a 

different line. 

 

Note: 

 The selection possibilities can also be loaded as a set from a GDX file,  

 

 The standard output from the control is a set definition in GAMS, other output 

can be selected by: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 36 

Radiobuttons  

Purpose 

Used to select for several items a one of n-settings, outputted as two-dimensional set 

Applicable fields: 

Title, GamsName, Value, Options, Rows, Tasks, Style 

Control optic: 

 

Possible values: 

Defined by range field 

User action: 

Select value by pressing up/down arrows or by editing the field with keyboard 

Example definition: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 37 

 

Output to GAMS: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 38 

Slider  

Purpose 

Used to select one integer value from a given range of allowed ones. The increments 

must also be defined. 

Applicable fields: 

Title, GamsName, Value, Options, range, Tasks, Style 

Control optic: 

 

Note: Selectable values will be restricted according to the increment definition. 

Possible values: 

Defined by range field 

User action: 

Select value by pressing up/down arrows or by editing the field with keyboard 

Example definition: 

 

Output to GAMS: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 39 

Spinner  

Purpose 

Used to select an value from a range of allowed ones. The increment can be chosen 

by the user. 

If the range of the slider is large, it might be hard for the user to pick a specific value. In that 

case, a spinner is easier to control. 

Applicable fields: 

Title, GamsName, Value, Options, range, Tasks, Style 

Control optic: 

 

Possible value: 

Defined by range field (first, last, increment) 

User action: 

Select value by moving slider 

Example definition: 

 

Output to GAMS: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 40 

Table / TableSimple  

Purpose 

Define a table with floating point values passed to GAMS. 

Applicable fields: 

Title, GamsName, Value, Columns, Rows, Dim3s, Range, Tasks, Style 

Control optic: 

 

User action: 

 Edit single fields with numerical values. Cut/Paste via clipboard possible 

Example definition: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 41 

Notes: 

 The value field gives first the default value for a column, next a set of default values 

for the rows for that column. Afterwards, additional columns follow the same scheme. 

It is therefore recommended to put all values for one column in a row to increase 

readability. 

 The range field might comprise several tuples of “low-up-increment” which will then 

be assigned to the columns of the tables. If there is only one tuple, it will be used for 

all columns. 

 If a range is given, a spinner will be used as the cell editor and values outside the range 

will be rejected. 

 The content of the table can also be loaded from a GDX file, in which case the name 

of an GDX file must be entered under <options></options>, e.g.: 

 

 The rows, columns and dim3s of a table can also be loaded fom a GDX file, an 

example is shown 

below:

 

 That case can be combined with dependencies by defining the GDX file from another 

field, see the example for single list. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 42 

Output to GAMS: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 43 

Layout of the controls on the interface and style options for 

controls  

Overall, the layout of the GUI is structured by the following main elements: 

1. Tabs provide the uppermost layer, by showing different “pages” with controls. 

2. Separators allow putting a heading over a group of controls. Controls under a 

separator share a common space and will be kept together as one block. 

3. Panels allow defining a group of controls which are not separated if the interface is 

resized, i.e. a block of controls. A separator can span over several panels. 

Generally, controls are put along the y-axis (top to bottom) into blocks. In order to provide an 

x-ordering (left to right), panels or separators can be used to define block of controls. If no 

panel and/or separator is given for a tab, all controls will be shown in one block. 

Controls in a block stick together; the maximal height of a block on any page defines the 

minimum height of all pages. If the width of a page becomes too small, the rightmost block(s) 

of that page will move below of each all others, and the minimal height of all pages will 

increase. Furthermore, as discussed next, controls can share one line. Accordingly, it is 

recommended to build relatively small block of controls. 

Note: if several panels are present under a separator, they are always laid out on along the x-

axis. Reducing the width of the page will not reorder blocks below a separator in several lines. 

Most of the controls allow for a style tag. Currently, only the following options are supported: 

1. Putting the controls in the same line below the last one  

 

Which leads to the following: 

 

The sameLine style tag can be combined with hidden or shortened control titles as discussed 

below. 

2. Left alignment  



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 44 

 

1. Left alignment of label and right alignment of control  

An example with two check boxes is given below: 

 

 

2. Width and height for tables and selection lists, e.g. 

 

3. Positoning of the title on top of the control: titlepos:onTop 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 45 

 

 

4. Using line breaks in the title, removing the title or shortening the title: 

It is sometime useful to use another title to be shown by the user as used internally to store 

settings. An example is the case where two neighbouring controls define a min and max value 

as in the following screen shot: 

 

The XML-code is shown below. Note the “sameLine:true” for the second spinner which 

positions the two logically connected controls (min and max) in the same line. The second 

title is shortened to “max” based on the dedicated “title”-style. That allows to use “max” as a 

title for several of such cases whereas the full description is still used to store the settings 

internally (e.g. in a batch file). 

 

If different style options are present, they should be separated by comma. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 46 

As a consequence of the layout concept discussed above, the following recommendations can 

be given: 

1. Firstly, in order to allow for resizing of the overall the GUI, not too many controls 

should be placed on one tab. 

2. Secondly, individual blocks of controls should be kept small to avoid that the page 

height becomes too large, they can be grouped using separators 

(<type>Separator</type>) and panels (<type>Panel</Type>. 

3. Small controls, especially when logically related, can be placed on the same line with 

<style>sameline:true</style>. 

4. Try to use short titles, if that cannot be avoided, consider introduced line breaks “\n” 

in the title description. Moving helpful comments into a <tooltip> can help to use 

shorter titles. Consider moving the title above the control using 

<style>titlePos:onTop</style>. 

5. Thirdly, controls should be linked to tasks and user levels and dependencies between 

controls should be used where possible to hide not active controls. 

Readability of controls can also be improved by using appropriate vertical alignment. The 

default case places the title left from the control and centres them jointly on the current panel. 

The alternative options (left alignment of title or left alignment of title and right alignment of 

control) where discussed above. 

1. Treatment of long texts: 

Lists can comprise long texts. This can either be outputted to the interface (“longTexts=true”) 

or, as the default, are converted to tooltips as in the example below 

 

Help system  

The help system consists of different elements: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 47 

1. Help related menu items (links to web pages, PDF documents) can be added to the 

menu bar. 

2. Tooltips can be registered with controls 

3. PDF Links, opened with the F1 help key, can be registered with tasks, worksteps and 

controls. 

4. Similarly, PDF links and tooltips can be registered with views, see section on the 

exploitation part. 

5. The exploitations part has fixed registered PDF links to the GUI user guide linked to 

various controls and dialogue. 

Help menu items 

GGIG allows adding three types of menu items to the menu bar: (1) HTML links, (2) e-mail 

sent items and (3) PDF links: 

 

 

Tooltips 

GGIG shows as the default tooltip the default value of the control and its GAMS name: 

 

Further tooltip lines can be append with the <tooltip> field. HTML tags can be used to format 

these additional lines, e.g. <BR> to begin a new line, <B> to put text in bold or <I> to show 

text in italics. If HTML tags are used, the tooltip texts must be enclosed in with a 

<![CDATA[..]]> tag as shown below. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 48 

 

Links to PDF documents with bookmarks 

The <pdfLink> field, available for tasks, worksteps and controls, can be used to let the user 

open a bookmark in a pdf documentation when the help key F1 is pressed. The tooltip will 

inform the user if a PDF link is registered: 

 

If MS-Word docs are saved as PDF, so-called textmarkers can be generated (under options, 

unprintables are similar) from headings, the Adobe PDF generators offers the same 

functionality. The PDF files are defined relative to the GUI directory, i.e. in the example 

above, the files must be found in the GUI directory. 

If the user presses the F1 key, the PDF documentation is shown in a separate window. The 

user can close the window; it opens with the next use of F1. The user can flip through the 

pages with page up/down buttons. The PDF decoder used internally is the non-commerical 

version which shows graphics not in full resolution. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 49 

 

Starting GAMS from GGIG 

GGIG allows starting the GAMS project directly from the interface, either in compile or run 

mode. A break request can also be sent to GAMS (“stop GAMS”): 

 

Once started, the GAMS project routes its output to the console back to lower right part of the 

interface: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 50 

 

The pane with the content can be scrolled by a right mouse click in the pane to open a popup 

menu. If an editor is added under “opther options”, the GAMS and the listing file can be 

opened as well: 

 

The pane can hence be “frozen” so that e.g. the status of a model solve can be inspected while 

the project continues to run. In order to successfully start a project, the ini file for GGIG must 

comprise the information where the GAMS executable can be found, but also where the 

GAMS code of the project to start is stored. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 51 

General interface settings 

The interface has a few standard settings which can also be accessed via the “edit settings 

dialogue”. These are: 

 Certain file locations: the directory where GDX files for results are assumed to be 

stored (resDir), and three directories which can be used to adjust the specific model 

application: the root of the GAMS file (workDir in GAMS), called modelDir, a 

directory for restart files and one for data files. 

 

The default case shown above is set to “Model,Res,Restart,Dat”, but the XML file can define 

only a subset of those or add additional ones, for instance 

 

Note: The name of the system (here TRIMAG) is defined in the „GGIG.INI“ file 

Default settings can be defined in the XML file: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 52 

GAMS and R related settings 

 

The default case is set to "GAMSexe,Rexe,Trollexe", but the XML file can define only a 

subset of those or add additional ones, for instance: 

 

These settings can also be defined in the XML file: 

 

SVN related settings 

 

The SVN settings can be used to perform checkout and updates in cases where the model 

code with related data, restart files or result files is under versioning control on a SVN server. 

If the model is not under version control, the settings “svn=no” renders the tabbed plan 

invisible. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 53 

Default settings can be defined in the XML file: 

 

Including credentials: 

 

The credentials are obfuscated. In order to edit them, use the dialogue and copy the settings 

from the generated ini file to the XML. 

It is also possible to switch the SVN panel completely off with: 

 

Settings linked to the exploitation tools 

 

The standard table file can be defined in the XML: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 54 

Meta data handling 

Why meta data? 

Meta data are data about data. In many GAMS projects, it is impossible or cumbersome to tell 

exactly based on which shocks and settings results of a model run had been generated. That is 

due to the fact that run specific settings are not stored at all or not stored together with the 

results of the run. Later on, result users are often left guessing what exactly the settings 

underlying the run might have been. 

In order to overcome that problem, the GGIG, drawing on CAPRI GUI concepts, forwards all 

interface settings - plus the user name and the current time -  to GAMS in one SET called 

META. 

A correctly defined interface with GGIG should allow to steer all run specific settings. If that 

is the case, the meta data generated by GGIG will provide an exact and sufficient definition of 

all run specific inputs, ensuring that all relevant meta data about a run are stored along with 

quantitative results in the same GDX file. Accordingly, GDX files shipped to other desks or 

committed e.g. to a SVN server still carry all necessary information to identify exactly the 

run. 

Technical concept 

The meta handling is straight forward. The state of the different control is mapped into pairs 

of set elements and related long text descriptions as shown below from an example 

application: 

 

and, might with one GAMS statement as shown below, stored in the GDX files along with the 

results: 

http://www.capri-model.org/docs/meta.pdf


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 55 

 

The user might then select some scenario: 

 

And then, by pressing “show meta”, view the settings used for these scenarios: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 56 

 

Exploitation 

The basic strategy of the GGIG exploitation tools roots in the CAPRI exploitation tools, 

which require that all model results are stored on an up to 10 dimensional cube, which is then 

stored in a GDX container as a sparse matrix. Additional dimensions can be added if several 

files are loaded, e.g. to compare scenarios and/or years. A specific XML dialect defines views 

(filters, pivots, view types) into the cube, and allows the user to load several result sets – 

typically from different scenarios – in parallel. 

If no table definition file is present, GIGG offers a GDX viewer which some interesting 

possibilities not found in the standard GDX viewer (such as numerical sorting, statistics, 

selections). For details, the GGIG user manual should be consulted. 

Excurse: history of GGIG, CAPRI GUIs 

Reading the following chapter is not necessary to work with the GUI, but rather intended for a 

reader who is technically interested. The original software implementation of CAPRI was 

based on software available at ILR at that time and comprised a DBMS realized in 

FORTRAN with C/C++ code for the GUI. Whereas the economic model was from the 

http://www.capri-model.org/gui.htm


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 57 

beginning implemented in GAMS, data transformations which generated the regional data 

base for CAPRI were still coded in FORTRAN, as it was done for the SPEL-EU data base 

serving as input for the regional data base of CAPRI. These FORTRAN routines were 

replaced by GAMS code in the CAP-STRAT project 2001-2004 along with new Bayesian 

based methodologies to ensure consistency and completeness. 

The very first maps in CAPRI (in 1998) were produced with an MS-EXCEL mapping plug-in 

which was at that time a cost-free add-on. However, moving the data to EXCEL and then 

loading them in the viewer was not a real option for the daily debugging work on the data 

base and the model. Therefore, shortly before the first CAPRI project ended in 1999, a JAVA 

applet was programmed by W. Britz which was able to draw simple maps from CSV-Files. 

These CSV-file were automatically produced by the CAPMOD GAMS code. That code with 

slight modification remained active for quite a while, and some of the features are still found 

in the current mapping viewer. Then for a while, the CAPRI exploitation tools were based on 

XML/XSLT+SVG and a mapping viewer in SVG was realized. However, the XML solution 

had the big disadvantage of requiring a large amount of single ASCII input files, and was not 

really performant when complex pivoting was used. That XML-based solution was also used 

with other modeling systems, e.g. the @2030 system developed for the Global Perspective’s 

Unit of the FAO. 

To avoid that many ASCII files were generated, the next evolution step was a pure Java GUI. 

released around 2006, with direct access to GDX files which is the still the basis of the current 

Java code underlying GGIG. GDX files are an internal file format used by GAMS which 

allows a rather efficient I/O for large sparse tables. An API library delivered as part of GAMS 

installation allows to access GDX files from other applications. That design has the obvious 

advantage to be firstly based on the portable JAVA language. Secondly, as no external DBMS 

is used, it is possible to use CAPRI or other modeling systems applying GGIG by solely 

executing GAMS programs. Such a model might hence run on any system supported by 

GAMS, without the need to install additional software. 

The next version of the CAPRI GUI consisted of three rather independent components. 

Firstly, a GUI to control the different work steps of CAPRI programmed in Java. That code 

dealt mostly with defining GUI controls (button, scroll-down lists etc.) to manipulate 

properties of CAPRI tasks, and then to start them as GAMS processes. That part has been 

thoroughly refactored with the revision of 2008. That refactoring introduced tasks as formal 

objects in the Java code of CAPRI, however in a far less generic way as it is done in GGIG. A 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 58 

second important part is the CAPRI exploitation tool, which are basically generic enough to 

be used for other modeling systems as well. The 2008 refactoring left most of the code 

untouched compared to the code developed since 2006, with the exemption of the graphics 

which is now based on the JFreeChart library. However, as discussed below, in 2007, the 

mapping viewer was refactored in larger part to host the 1x1 km grid solution developed in 

the CAPRI-Dynaspat project. The exploitation tool is a rather unique solution to exploit result 

sets from economic models based on the definitions of views which are defined in XML 

tables. It combines features from DBMS reporting, data mining, spreadsheet functionalities 

and GIS into one package. And thirdly, there are some specialized pieces as the HTML based 

GAMS documentation generator which are linked into the GUI. 

In 2010, a possible project by a Swiss team to add an interface to a GAMS project triggered 

the development of GGIG. A further motivation was the fact that any new GUI control 

needed on the CAPRI interface required changes in the Java code. That was not only tiring, it 

also let the Java code grow and made it harder to maintain. There were also increasingly 

features added to the CAPRI GAMS code which could not steered by the CAPRI GUI, but 

were switched on/off or otherwise modified by changes in the GAMS code. It was clear that 

this development was not sustainable. GGIG was first tested with very simple GAMS 

program, before the decision was taken to move the CAPRI GUI over to GGIG. That was 

probably a lucky development for GGIG, as CAPRI was at that time already a highly complex 

project with many tasks and settings, such that the further development of GGIG reflected the 

needs of complex model systems. 

Execution of tasks via a GamsStarter and GamsThread 

Execution of tasks in GGIG is handled by a GamsStarter object. An instance of GamsStarter 

lets the task write out the necessary include file(s) in GAMS format to generate a specific 

instance of the specific task (a simulation run for a specific scenario, simulation year, with the 

market model switched on or off …). A GamsStarter also knows about the working directory 

or other specific GAMS settings as the scratch directory. It may generate a pipe for the 

GAMS output to the console to show it in a GUI. 

An Task can be executed by a GamsStarter who will then create a GamsThread. A 

GamsThread extends the SwingWorker interface of Java so that it may communicate with the 

normal event queue of JVM. A GamsThread can be gracefully terminated by sending a 

SIGNT signal to the GAMS process. That will let the GAMS execution stop at a specific 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 59 

point determined by the GAMS engine itself and start the finalisation handling of GAMS as 

well as the removal of intermediate files and directories. 

Refactoring the mapping part 

When the 1x1 km grid layer was added to CAPRI during the CAPRI-Dynaspat project, it 

became obvious that the existing JAVA code used to produce maps in the CAPRI GUI needed 

some revision, especially regarding the way the geometry was stored. In this context, the 

question of using an existing GIS independently from CAPRI or the use of existing GIS 

classes plugged-into the CAPRI GUI was raised again and some tests with open-source 

products were undertaken. A stand-alone GIS as the sole option was certainly the less 

appealing solution. Firstly, it would have required exporting data from the GDX containers 

with CAPRI results to the GIS software, producing rather large intermediate files. It would 

also have left the user with the time-consuming and often error prone task of exporting and 

importing the data. Secondly, the user would need to switch between two different programs 

and GUI standards. And thirdly, all the usual problems with installing and maintaining 

additional software on a work station would occur. However, as indicated later, the GUI 

naturally allows passing data over to external applications and does hence not prevent the user 

from using a full-fledged GIS solution.  

The main points taken into account during the search of a map viewing solution for CAPRI 

were: (1) possibility to import data from the CAPRI GUI efficiently, (2) user-friendliness, 

(3) performance and (4), in the case of plug-in libraries, expected realization and maintenance 

resource need, and naturally (5) license costs. It turned quickly that an ideal product was not 

available. Some of GIS products were not able to allow for the necessary link between newly 

imported tables with region codes and an existing geo-referenced geometry. Others had very 

complex user interfaces or produced run-time errors, took ages to draw the HSMU maps or 

were quite expensive. From the different options tested, the gvSIG 

(http://www.gvsig.com/index.php?idioma=en) freeware GIS seemed to be the only option, 

allowing the user to import data from a CSV – which must however be semi-colon delimited 

– and join one of the columns to a shapefile. At least the version installed at that time was 

however running not very stable. 

In the end, it was decided to build on the existing code base and let Wolfgang Britz write the 

additional code “on demand”. The main advantage of that approach is the fact that the 

mapping view is transparently integrated in the CAPRI GUI, it is sufficient to switch from 

http://www.ilr.uni-bonn.de/agpo/rsrch/dynaspat/dynaspat_e.htm


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 60 

“Table” to “Map” in a drop-down list to produce a colored map, and that user demands 

regarding additional functionality may be and had been added, taking into account the specific 

needs of the CAPRI network. 

Compared to ArcGIS, where the EU27 HSMU geometry plus codes and centroids requires 

about 340 Mbytes, the GGIG based version requires about 27Mbytes solely. Reading the 

GGIG coordinate information is somewhat slower compared to ArcGIS due to unzip on 

demand. The actual drawing operation takes about the same time as in ArcGIS (about 11 

second for the full data set). Classification in GGIG is typically faster. 

Views as the basic concept 

The concept of the GGIG and former CAPRI exploitation tools is centred on the idea of a 

view. Content wise, each view may be understood as showing one or several indicators 

relating to results of GGIG tasks, e.g. in CAPRI, environmental effects of farming, prices or 

market balances. Technically, it could be understood as a combination of a selection query 

(i.e. filters in the different dimension of the data cube loaded by the exploitation tools) and 

presentation details (e.g. pivot, visualization as a map, table or graphic, fonts and colors), 

similar to a report definition in a DBMS. 

Each view thus: 

 extracts a certain collection of numerical values 

 labels them so that they carry information to the user (long texts, units) 

 chooses a matching presentation – as a table, map or graphic 

 and arranges them in a suitable way on screen. 

The views can be linked to each other, allowing a WEB like navigation through the data cube. 

Views can be grouped to themes. The user may open several views in parallel, and he may 

change the views interactively according to his needs, e.g. switch from a map to a tabular 

presentation, or change the pivot of the table, sort the rows etc. 

Internally, each view is stored in an XML schema. The XML schema allows to attach long 

texts, units and tooltips to the items of a table, and thus to show meta-data information to the 

user. The XML schema hence replaces look up tables in a DBMS. It may equally store 

information regarding the pivoting, the view type (table, map, different graphic types), and for 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 61 

maps, classification, color ramp and number of classes. The views can be grouped into logical 

entities, and are shown as a popup menu to the user.  

Tabular views may feature column and row groups. Empty columns and rows can be hidden; 

tables can be sorted by column, with multiple sort columns supported. Numerical filter can be 

applied to columns. 

Java

View

definitions

GDX

GDX

…

User

supplied

filters

GUI:

Selection/pivot…

 

Data model 

The underlying data model is very simple and straightforward. All data are kept in one large 

multi-dimensional sparse data cube, and all values must either be float values or strings. Each 

data dimension is linked to a vector of string keys. Those keys are the base for the filter 

definitions. Currently, data cubes with up to 10 dimensions are used (regions – activities – 

items – years – policy scenarios – dim5 ... dim9). The data storage model is equally optimised 

to the specific needs. As only float values or strings are supported, all non-zero data can be 

stored as one primitive array of either floats or strings. To allow fast and efficient indexing, a 

linear index is constructed from the multi-dimensional data cube, and the non-zero data and 

their indices are stored in a hash table. That renders data retrieval very fast. All data are 

loaded in memory at initialisation time: For moderately long linear indices about 10 Bytes are 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 62 

required to store a non-zero float and its index as an integer. If the maximal linear index is 

very large, the index is stored as a long and the storage need goes up to about 16 Bytes. 20 

Million non-zero numbers can hence be hosted in about 200 Mbytes. 

The data are read from a generic file format generated by GAMS (General Algebraic 

Modelling System, a commonly used software package in economic modelling) called GDX, 

the software package on which CAPRI is based. Access to GDX is handled via an API 

provided by GAMS. 

Client based solution 

Technically, the exploitation tool is completely client based. That reflects the specific user 

profile of the CAPRI modelling system where the exploitation tool is integrated with an 

economic model and tools building up its data base. The main aim of the tool is to support 

forward looking policy analysis. For this purpose, users will create their own scenarios and in 

some cases even own variants of the export data, which will lead to processes requiring 

considerable processing and storage resources. A client-server solution where the production 

process and data storage would need to be hosted on a web server is therefore not a preferred 

solution, also as users will often develop variants of the modelling system by code 

modification in GAMS, and contribute to its development. The structure of the data driver 

would however very easily support linkage to a network or WEB based data bases. It should 

however be noted that the data base and GAMS code are managed via a Software versioning 

system, which is a kind of client-server environment. The reader is reminded that client-based 

does not exclude to store programs and data on file-server in a network environment. 

The geometry model 

The mapping viewer of GGIG is based on very simple and straightforward concepts. First of 

all, it basically supports solely polygon geometries, line strings (interpreted as rivers) and 

points for labelling. The storage model is optimised to host rectangles, and is especially 

efficient if the polygons vertexes are all points in a raster. The topology is not read from a 

shapefile, but stored in a generic rather simple format. However, a shapefile interface to 

generate the generic format is available. The vertices are stored in x,y coordinates, already 

projected in a rectangular coordinate system, and the viewer does not deal with the geographic 

coordinate system, but simply scales the rectangular coordinates in the viewport. The viewer 

in its current version solely supports one layer of quantities. Those restrictions naturally allow 

reducing memory needs, and, thanks to the rather simple data structures, also rather allow 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 63 

performing drawing operations. It should also be noted that the JIT compiler of JAVA is 

indeed astonishingly fast given that that Java code is only precompiled. 

The biggest topology currently handled simultaneously covers an intersection of Corinne 

Land Cover, slope classes and Soil Morphological Units and comprises around 2.7 Million 

polygons for EU27. As the majority of the polygons are rectangles, not more then 6-7 Million 

points needed to be stored. The topology handler and the drawing routines separate rectangles, 

for which only the two outer points are stored, from polygons, for which the vertices and 

centroids are stored. 

The viewer is written in Java. Swing is used for the GUI in order to profit from the simplest 

implementation, the viewer has been written completely new, and is not based on existing 

GIS libraries. Even certain standard JAVA classes as e.g. for hash tables, have been replaced 

by own implementations, to reduce implementation overhead. Some care was given to support 

flexibility in classification, given that only quantities are supported, so that the tool covers 

natural breaks, quantiles, equal spread, mean standard and nested means. Area weighting is 

supported as well. 

In order to export data to other applications, the tools support first of all tab delimited 

clipboard export, allowing import e.g. into EXCEL. Maps can be exported as JPEGs over the 

clipboard and to disk in several other formats. Alternatively, the user may export the data to 

an external file, in CSV format, DBF, to MS Access or to GAMS. DBF export will generate a 

second file comprising meta data. 

The exploitation tools of CAPRI build on a rather simple structure. Each CAPRI work step 

stores its results as a GAMS parameter, representing a multi-dimensional sparse cube which is 

stored as a GDX file. The exploitation loads the non-zeros from one or several GDX files into 

memory. However, given the length of the different dimensions and the use of short codes, 

the user would be typically lost on his own in the large tables. The XML definition file is the 

equivalent of a collection of “SQL queries” as it defines views which combine filters in the 

dimensions of the cube with information on how to show the results (pivot, table, graph or 

map). 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 64 

XML definitions for views 

Why a XML definition files for views? 

The exploitation tools of GGIG build on a rather simple structure. Each GIGG task can store 

its results as GAMS parameter representing a multi-dimensional sparse cube and save it on 

disk as a GDX file. The exploitation loads the non-zeros from one or several GDX files into 

memory. However, given the length of the different dimensions and the use of short codes, 

the user would be typically lost on his own in the large tables, which can comprise several 

million non-zero data and basically an unlimited amount of zero cells. The XML definition 

file defines the views explained above, and allows a structured and user-friendly way to 

exploit the results of the different work steps. It also separates raw data from the views and 

from the GUI code itself, which requires relatively little information about the underlying data 

and their structure besides what is provided by the definition files. XML is an industry 

standard to store structured information in non-binary text files, which explains why that 

format was chosen. 

As explained in more detail in the excurse above, each view can be understood as to define a 

report, i.e. a combination of a selection query and information on the presentation of the 

selected values. 

The structure of the XML definition files for the views  

General comments 

The XML parser used by the GUI’s java is a standard XML parser. The table viewer currently 

supports up to 10 dimensions, which are named as: 

1. Region 

2. Activity 

3. Product 

4. Scenario 

5. Year 

6. Dim5, Dim6, Dim7, Dim8, Dim9 

in the XML-file. These “logical dimensions” which are used in the XML definition file can be 

mapped to any dimension of the original data cube read in by the java code. Pivoting can then 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 65 

be used to map these “logical” dimensions to viewport dimensions seen by the user such as 

the columns and rows of a table. 

Necessary tags for tables 

A table definition is found between the <table> … </table> tags. It must at least define: 

 The table theme, such as <theme>Welfare</theme>. The themes are shown as a drop-

down menu in the exploitation tools. 

 The table name, such as <name>Welfare comparison between Member 

States</name>. The names must be unique. 

 The items of the tables and the dimension where they stem from (or that non item 

dimension is used). 

The order of the themes and table names will define their order in the drop-down menu. 

Alternatively, the <themes> tag can be used to order the themes e.g. 

 

Defining the items of the table 

The underlying idea of having a “hand defined” list of items for one of the definitions stems 

from the observation that most tables have only a very limited number of columns, and that 

these are normally formatted with care regarding their text comprised. A table therefore 

typically comprises a definition of items, but the items must not necessarily be mapped in the 

column viewport. 

  <item> 

     <itemName>Money metric</itemName> 

     <key>CSSP</key> 

     <unit>Mio Euro</unit> 

     <longtext>Consumer welfare measurement: expenditures necessary to reach utility in 

current simulation under prices of reference scenario</longtext> 

     <link>Money metric</link> 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 66 

  </item>   

An item definition is enclosed in the <item>…</item> tags. It must at least comprise a <key> 

and an <itemName> tag. The case sensitive key must match the symbol identifier as found in 

the GDX file, whereas the itemName can be freely chosen. 

Facultative tags are: 

<unit>: a physical unit shown in table 

<longtext>: a text shown when the mouse hovers of the column 

<link>: a link to another table for the table cells under the column. 

<colormode>: the color mode used when a map is drawn for the item. The following modes 

are supported: 

 GYR Green Yellow Red 

 RYG Red Yellow Green 

 GR Green Red 

 RG Red Green 

 BG Blue Green 

 GB Green Blue 

 WB White Black 

 BW Black White 

 LD Light Blue Dark Blue 

 DL Dark Blue Light Blue 

<eval>: the item is calculated from other items, e.g. <eval>VAL +  VAL[*,BlueBox,*,*,*,*] 

+ VAL[*,DeMinimis,*,*,*,*]</eval> 

<node>: the item defines a vertex in a network graph 

<edge>: the item defines additional an edge in a network graph 

In order to define the dimension from which the items are taken, the user can set either: 

<itemDim>region</itemDim> 

Deprecated is the old style: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 67 

<isActivity>NO</isActivity> 

It is also possible to refrain from declaring any items: 

<itemDim>none</itemDim> 

In which case only the filters used on the different dimension are active. The possibility to 

attached attributes to each item is lost in that case.  

Which means that the table loops over the products, and the items refer to the activity 

dimension. A typically example is a table with market balance elements:  items such as 

“FEDM” are found in the columns of the CAPRI tables where also the activities are stored. 

Consequently, the table will loop over the products, and not over the activities. Alternatively: 

<isActivity>YES</isActivity> 

allows only items from the product dimension, and lets the table loop over the activities. A 

typical example provides a table showing activity levels, yield or economic indicators for the 

production activities. 

Tables can also be defined solely on filters without any specific item dimension: 

 

Additional tags: <subTheme> 

Allows introducing sub-themes in the table selection. 

Additional tags: <defpivot> 

The definition of the default pivot for a view consists of a setting as shown below 

 

Deprecated old style 

The deprecated old style to define the pivot string consists of 4 characters. The first character 

position is for the table row blocks, the second for the table rows, the third for the column 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 68 

blocks and the last for the columns. The logical dimensions are labelled with the following 

characters: 

A Activity 

D Dim5 

I Items 

M Activity and Product merged 

P products 

Q Year and dim5 merged 

S Scenario 

R regions 

X Region and dim5 merged 

5...9 Dim5 ... Dim9 

0 Empty 

The definition <defpivot>0R0S</defpivot> thus means: regions are in the rows, scenarios in 

the columns. The definition <defpivot>PISR</defpivot> puts the products in the row blocks, 

the items in the rows, the scenarios in the column blocks and the regions in the columns. 

Additional tags: <defview> 

Defines the default view used for the tables, the list of default views is equal to what the user 

can select in the drop-down box: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 69 

Additional tags: <COO> 

This tag defines the geometry to use for maps. Currently, the following geometry files are 

available in CAPRI: 

NUTSII.zip NUTS 2 geometry for countries covered by the supply module 

MS.zip  NUTS 0 geometry for the countries covered by the supply module 

RMS.zip Global geometry for the regions with behavioural functions in the market 

model 

RM.zip Global geometry for the trade blocks in the market model 

HSMU.zip 1x1 km pixel clusters for EU 27 without Malta and Cyprus 

There are also 1x1 km pixel clusters for individual Member States, but these are internally 

passed to the viewer when only one country is shown. 

Alternative texts for the dimensions 

Normally, the names for the dimensions are passed to the view by Java. However, their name 

can be changed by: 

<regionText>….</regionText> 

<activityText>…<activityText> 

<regionText>…<regionText> 

<productText>…<productText> 

<scenText>…<scenText> 

<dim5Text>…<dim5Text> ... <dim9Text>…<dim9Text> 

<yearText>…<yearText> 

That text is shown: 

 As description above the outer drop-down selection boxes: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 70 

 In the pivot dialogue:  

 And in gaphics / map titles and the like. 

Additional tags: <clone> 

The tag uses the item and other definitions from another table, and can be used e.g. to show 

the same selection in a different pivot or view types, e.g.: 

 

The clone tag must immediately follow the name tag, as otherwise, preceding definitions are 

lost. 

Additional tags: <drop> 

That tag is uses in conjunction with a <clone> and allows removing an item from the cloned 

table definition: 

 

Further tags 

There is a longer list of further tags which refer e.g. to definitions of graphs. They are here 

only listed in here with their default settings without a detailed explanation: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 71 

 

The following list further tags, partially explained above: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 72 

 

Filters for the elements in the different dimensions 

Without filters, all elements found on a logical dimension will be shown to the user in any 

table. The exemptions are the items defined for a specific dimension, see above. In order to 

restrict the selection in the other logical dimensions, a selection list can be defined in the table 

definition. Take as an example the following XML tag: 

<regionSel>MS,RM<regionSel> 

It means that the table will only show elements with the tag <region> (see below) which 

comprise MS or RM in their <sel> field. The example would refer to the Member States. 

There is a specific selection list: 

<regionSel>FromDataCube<regionSel> 

Which will neglect the elements under <region> as defined in the file, but rather takes any 

one found in the data cube. The option was introduced originally for CAPRI to avoid the 

necessity to define all 180.000 HSMU codes in the file. 

Alternatively, a regex string can be used, e.g. 

<dim5Sel>red[0-9]+_regex</dim5Sel> 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 73 

In both cases, the code will nevertheless try to locate matching entries in the predefined lists 

based on their keys. 

Attaching long texts and filters to elements 

Items for activities, products, regions and dim5 are typically defined in the file, see the 

following example: 

   <region> 

      <key>SK020038</key> 

      <itemName>SK020 - FT41 / GT100 - Specialist dairying (FT 41)</itemName> 

      <sel>[all, RS, SK, FA, SKFA, FT41, GT100, FT41GT100]</sel> 

    </region> 

The definitions for one item are enclosed in the tag (<region>…</region>, 

<activity>…</activity>, <product>….</product>, <dim5>…</dim5>). 

The order of the items in the tables is defined by these lists. 

Each item has a key, which corresponds to the symbol identifier found in the GDX file. The 

keys are case sensitive. The itemName is a long text which is typically shown to the user. The 

elements found between the <sel> …</sel> tags can be used as filters in table definitions, or 

interactively by the user. 

A specific tag is <aggreg>yes</aggreg>. When found for an item in the rows, it will be shown 

twice in the table: once in the top part, and then again. 

Includes 

The XML processor allows to use includes, as seen below: 

 

These includes can e.g. be generated by a GAMS process to pass run specific item lists to the 

exploitation tools. The following code from “GTAPinGAMS” project shows how to may look 

like: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 74 

 

That allows to group view definitions used by several tasks in one file, and to use these 

groups for a specific task. The following shows an example from CAPRI: 

 

The used of <xi:include> allows to also generated XML files on the fly by GAMS and pass it 

to the viewer, e.g. to reflect flexible lists of regions.  

The structure of the GAMS generated gdx files used by the 

exploitation tools 

The exploitation tools load directly the gdx-files generated by the GAMS processes linked to 

the tasks described above. The gdx-files only store non-zero numerical values. The main 

content of a gdx file are two types of records. The first type provides a list of all labels used to 

identify the numerical data in the gdx file as GAMS does not support numerical indices, but 

requires character labels. The list does not distinguish for which data dimensions the labels 

are used. They are hence typically a mix of product, activity, region and further labels. The 

second type of records belongs to GAMS parameters (scalars, vectors, or multi-dimensional 

tables). Each non-zero numerical item in each parameter has its own record. Each of these 

records provides the numerical data in double precision (depending on the parameter type 

there may be different data stored in one record, as for variables its upper and lower bound, 

current level and marginal value etc.), and a vector of indices pointing in the list of codes 

described above. 

Loading the data from gdx files 

The data matrices generated by the different tasks as described above and stored in gdx-files 

are typically rather sparse, so that it seemed appropriate to load the data from the gdx-file into 

hash tables for exploitation purposes. That is done in a two step procedure. In the first step, all 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 75 

records from the gdx file are read and vectors of all found indices are stored. The length of 

each data dimension is only known when all data records are read, and is equal to the number 

of unique indices for each dimension. Once all records are read, the final length of these index 

vectors then defines a linear index room for the multi-dimensional table. In a second step, the 

records are read again, and the index vectors for each record now allow to define a linear 

index in the total table. A hash code is derived from that linear index to store the numerical 

values into a hash table. As the number of items to store in the hash table is known 

beforehand, a rather simple hash table implementation can be used. If necessary, step one can 

be run over several parameters which may be hosted in several gdx files, so that results from 

different runs can be merged into one hash table. 

As the gdx-files provide lists of all labels used in any parameters stored in that gdx-file, the 

index vectors allows to build lists of labels linked for each index in a data dimension. There 

exists an additional storage type in the gdx-files to retrieve long-texts to the labels as defined 

in GAMS set definitions. However, one label may occur in different sets with different long 

texts, and the gdx-file does not store a possibly user defined relation between a data 

dimension of a parameter and a specific set, an option termed domain checking in GAMS. In 

order to link hence long-texts to the labels used for a specific data dimension, two options are 

possible. Firstly, at run time the user may interactively re-establish the link between data 

dimensions and specific sets, and thus add long-texts to the labels used on that data dimension 

based on his knowledge. Or the relation may be hard coded in the JAVA code. 

Design hints for structured programming in GAMS with 

GGIG 

Using information passed from GGIG 

As seen above, GGIG passes information mostly via $SETGLOBAL settings. That has the 

advantage that the GAMS coder is rather free how to use the information. Take the following 

example (which could be generated from a slider): 

 

There a several ways to use that information in GAMS code, below are a few examples: 

1. Round the setting to an integer with $eval in GAMS and use it in a set definition: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 76 

 

2. Use it in an combined definition and declaration statement for a scalar 

 

3. Use it in assignment 

 

4. Use it for pre-compiler conditions: 

 

5. Use for GAMS program controls 

 

Structure your program by tasks 

The following example shows how the concepts of tasks can be used on conjunction with 

includes to structure a top-level program 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 77 

The basic idea is to have a common a part which is shared by many tasks and then blocks 

which perform task specific operations. As the “$iftheni ... $endif are working at compile 

time, not used code is excluded even from compilation which helps to save memory and 

reduce the size of the listing. 

One entry points for run specific settings 

A typical problem with more complex economic simulation models defined in GAMS is the 

steering of scenarios. GGIG pushes the GAMS developer to a code structure where all run 

specific settings are entered via the single include file generated by GGIG. That does not 

imply that all data for a specific scenario are comprised in the include file. It could e.g. mean 

that the user has selected via the interface include file(s) with run specific settings and that the 

names of these files are passed via the include file to GAMS. 

Scenario editor 

The scenario editor is an optional tool to be embedded in a GGIG user interface which 

supports the user in setting up run specific include files where the content is not stemming 

from GUI controls. That parallel way to define run specific input is typically necessary for 

more complex tools where e.g. policy scenarios are defined in GAMS code. 

The scenario editor is a “predefined” task which must be named “Define scenario”, e.g. 

 

A related setting stores the directory where the input files are found: 

 

The default location for user edited files is a sub-directory under scen called “user_scenarios”. 

That location can be overwritten by the following setting: 

 

The tag “calledBy” in the fie header of generated file is filled if the following field is set: 

 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 78 

Batch execution 

The batch execution facility is a tool which: 

 Allows executing many different tasks after each other without requiring user input. 

 Reports the settings used, any errors and GAMS result codes in a HTML page from 

which they may queried at a later time. 

 Ensures that each new run generates its own listing file, which can be opened from the 

HTML page. 

 Allows storing the output of the different runs in a separate directory, while reading 

input from unchanged result directories. 

The purpose of the batch execution facility is therefore at least twofold. On the one hand, it 

allows setting up test suits for the GAMS code of a project such as checking for compilation 

without errors for all tasks and different settings such as with and without market parts etc. 

Secondly, production runs of e.g. different scenarios can be started automatically. Timer 

facilities allow starting the batch execution at a pre-scheduled time. Along with functionalities 

to compare in a more or less automated way differences in results between versions, the batch 

facility is one important step towards quality control. 

Each generated include file comprises a block of lines, commented out, which can be copied 

into a text file and used with the batch file facility. For details on the use of the batch 

execution utility, refer to the user guide. 

Generate GAMS documentation  

The GUI comprises a tool to generate for each GAMS file and each symbol used HTML 

pages which are interlinked. For details on the code documentation facility see the technical 

document “Javadoc like technical documentation for CAPRI” to be found on the Capri web 

page under technical documents. 

The controls on top allow the user: 

 To define in which directory the “EXP”, “REF” and “GDX” files are stored which 

serve as input into the documentation generator. 

 To choose the directory where the HTML files will be generated. 

 To select the tasks covered by the documentation generator. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 79 

For details on the use of the GAMS documentation utility, refer to the user guide 

Background 

System such as CAPRI have grown over years to a rather complex (bio-)economic modelling 

system. Its code base consists of hundredth of single GAMS files, and ten thousands of lines. 

Not only newcomers face the challenge to get an overview about dependencies in the huge 

code base and to link the technical implementation to methodological concepts and 

documentation. On top, the large-scale character of CAPRI often asked for technical features 

in the GAMS code which are far from the solution chosen for tiny examples as often 

presented in courses, as the wide spread usage of dynamic sets, conditional includes, the 

usage of $batcinludes or the application of the grid solve feature. 

The task of documenting and keeping an overview of the CAPRI code base is certainly not 

eased by the fact that basically any object in GAMS has global scope. The concept of 

functions of subroutines underlying many other programming languages with clearly defined 

lists of variables passed in and out is not implemented in GAMS. Encapsulation and 

modularisation are hence not naturally supported by GAMS. That also renders automated 

documentation of the code more challenging compared to other languages. 

Since quite a while, CAPRI user community discusses about some refactoring of the code 

base on more clearer coding standards with the aim to ease code maintenance, documentation 

and further development. That refactoring should also cover standard for in-line 

documentation, including a better link to the methodological documentation. The project 

CAPRI-RD (2009-2013) has attacked some of these tasks for CAPRI in specific working 

packages. But clearly, that will only become success if the underlying concept is generally 

accepted and implemented by the community of CAPRI developers. That means that the 

value added of following coding and documentation standards must be visible to any 

developer. 

The section here shows how to generate an easy to maintain and useful technical 

documentation for GAMS based projects such as CAPRI, based on the example of 

JAVADOC (http://de.wikipedia.org/wiki/Javadoc). It is organized as follows. The next short 

paragraphs will list desired properties of a technical documentation for a system such as 

CAPRI, followed by a more detailed discussion of a proposal for an implementation which is 

working as a prototype. The last chapter will then show selected screenshots.  

http://de.wikipedia.org/wiki/Javadoc


GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 80 

Desired properties 

The main properties an automated technical documentation of a tool under GGIG such as 

CAPRI should fulfil are as follows: 

 Avoiding redundancies, i.e. information should whenever possible only inputted once. 

Specifically, existing in-line documentation already present in the code should be 

ported over to the technical documentation automatically. 

 Changes in the code structure should possibly be reflected automatically 

 The documentation must be able to reflect different tasks projects and to differentiate 

between instances of the same GAMS project used in different configurations (e.g. for 

calibration or simulation) 

 Its biggest part of the technical documentation should be constructed directly from the 

code base in an automated way. 

 It should also collect information from the SVN versioning system 

Technical implementation 

The main ingredients of the implementation are as follows: 

 The final format of the technical documentation is based on automatically generated 

static HTML pages, following the example of JAVADOC, with some JavaScript to 

allow for collapsible trees 

 The methodological documentation of a project should be edited in Word, and 

converted into a PFD-document. It will comprise references to GAMS sources 

(individual GAMS files) or even GAMS objects (variables, equations, models, 

parameters). Those references can be addressed in the GAMS code, and the HTML 

pages will allow opening the PDF-document at the referenced point. 

 As with JAVADOC, technical documentation should be edited as in-line comments 

into the GAMS sources, based on clear in-line documentation standards. Each GAMS 

source as a file header with standard properties about the file. 

 In-line documentation will be mostly based on two levels: the level of individual 

GAMS files and on the level of individual GAMS objects. In some cases, that may 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 81 

require to break down larger programs in smaller pieces, with a clear task and 

eventually clear inputs and outputs. 

Overview 

The following diagram depicts the general approach. The SVN server will host the GAMS 

sources, the documentation builder (Builddoc) as a Java application and the PDF with the 

methodological documentation. Users synchronize their local work copies with the server. In 

order to avoid developing in Java a new parser for GAMS code, the GAMS compiler itself is 

used to generate the necessary input for the technical documentation. Two different types of 

files for each “project” or “instance” included in the documentation are used for that purpose 

so far: 

1. So called “REF” files, which list information in which files and in which line symbols 

are declared, defined, assigned and referenced. They also comprise information about 

long texts and domain of the symbols. The “REF” file can be generated by the 

argument rf=filename when GAMS is called (e.g. ”GAMS capmod a=c 

rf=capmod.ref”). As the GAMS compiler itself is used, conditional includes and the 

like are automatically treated as during execution time. That opens also the possibility 

to include the generation of the documentation in the GUI. 

2. GDX files generated with an empty symbol list at compile time ($GDOUT 

module.gdx; $UNLOAD; $GDOUT). The resulting GDX file will comprise all sets, 

parameters etc. used by the programs, and most importantly, the set elements as 

declared. The name of the GDX file could be passed as a parameter by the GUI. 

Those files hence reflect the actual local code base with any local modification, and can be 

generated for a specific instance of each GAMS project (e.g. in case of CAPRI’s simulation 

engine, CAPMOD, with and without the market module etc.). A JAVA application named 

Builddoc parses both types of files, on demand for several projects, and generates static 

HTML pages. The GAMS code comprises in-line comments carrying information about 

references to the methodological documentation, and the HTML pages comprise calls to the 

editor to open the actual source code at the local machine, as well as information about 

relation between the different GAMS Symbols. 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 82 

 

SVN 
server 

GAMS 
compiler 

GAMS 
sources 

Ref - Files 
GDX 

with symbol 

Builddoc 
java 

PDF 
doc 

HTML 
docs 

Editor 

 

Handling of GDX files 

The “expand” option generates information about GDXIN and GDXOUT statements as those 

are executed at compile time. Consequently, files addressed via GDXIN or GDXOUT are 

automatically reported in the documentation system. 

Hovever, the file does not comprise information about the “execute_load” and 

“execute_unload” executed at run time. That is quite clear, as the statements may be 

comprised in program structures as loops or if statements where there are never reached at 

execution time. We need hence a work around to report those files in the documentation 

system if we would avoid writing a new GAMS parser. 

However, “$IF EXIST” statements are taken into account by the expand command. It is 

therefore proposed to put an “$IF NOT EXIST” combined with an abort statement before all 

“execute_load” statements. As seen in: 

 

By doing so, the program will already at compile exit if one of the necessary files is missing. 

That avoids starting a process and eventually overwriting files which then will stop later due 

to missing input data. The HTML page will report that sequence as: 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 83 

 

The use of “$IF EXIST” in the context of “execute_unload” can only be motivated with the 

fact to produce code which is better documented. Here, is it proposed to warn the user at run 

time about the fact that the file is overwritten. 

Index 

Controls for selections, multiple selections 

allowed  33 

Controls for selections, radiobuttons  36 

Controls for selections, single selections 

allowed  32 

Controls to change numerical values, slider  38 

Controls to change numerical values, spinner  

39 

Controls to change numerical values, tables  40 

File selection, single files  30 

File selection, subdirectories  31 

Generate GAMS documentation  78 

Help system  46 

Interface layout  43 

Left aligned  43 

On/Off settings, checkbox  29 

Predefined selection groups in multilists  34 

Several controls on one line  43 

Spread alignment  44 

String input, textfield  28 

Structuring controls, panel  27 

Structuring controls, separator  27 

Structuring controls, tab  26 

Table viewer, XML definition file  64 

 

References 

Britz W., and M’Barek R. (2003). BenImpact: a decision support system for agricultural policy in 

Benin. Poster paper at 25th International Conference of IAAE, Durban, South Africa 16-22 

August 

Britz, W. (2014a): A New Graphical User Interface Generator for Economic Models and its 

Comparison to Existing Approaches, German Journal of Agricultural Economics 63(4): 271-285 

Britz, W. (2014b): The Graphical User Interface for CAPRI version 2014, Uni Bonn, Institute for Food 

and Resource Economics, http://www.capri-model.org/docs/Gui2014.pdf 



GGIG Graphical Interface Generator – Programming Guide 

GGIG, Wolfgang Britz, Version March 2021 84 

Britz, W. and Kallrath, J. (2012). Economic Simulation Models in Agricultural Economics: The Current 

and Possible Future Role of Algebraic Modelling Languages, in: Kallrath, J. (eds.). Algebraic 

Modelling Systems: Modelling and Soving Real World Optimization Problems, Springer, 

Heidelberg, Germany, 199-212 

Britz, W., Dees, M., Walkiewicz, J. (2014): A Forest Sector Model for the Region Baden-Württemberg 

in Germany, selected paper presented at the Bioenergy from Forest 2014, September 15-18, 

2014, Helsinki (Finland) 

Britz, W., Perez Dominguez, I. and Badri Narayanan, G. (2015): Analyzing results from agricultural 

large-scale Economic Simulation Model: Recent Progress and the Way Ahead, German Journal 

of Agricultural Economics, Forthcoming 

Britz, Wolfgang (2009). Sequentially linking a village CGE to farm-household models - a focus on 

transaction costs. Presentation at the workshop on "Evaluation of Rural Development Policies: 

Theory and Application", University of Kiel. July 13-14, 2009. 

Dol, W. (2006). GAMS Simulation Environment. LEI The Hague, 128 pages, URL: 

http://www3.lei.wur.nl/gamstools/gse.doc 

Heidecke, C., Heckelei, T. (2010). Impacts of changing water inflow distributions on irrigation and 

farm income along the Drâa River in Morocco, Agricultural Economics 41(2): 135 – 149 

Jansen, J., Adelle, C., Crimi, J., Dick, J., Helming, K., Jacob, K., Janssen, S., Jordan, A., Podhora, A., Reis, 

S., Roosenschoon, O., Saarela, S.R,. Söderman, T., Turnpenny, J., Weiland, S. and Wien J.E. 

(2012): The LIAISE Approach to Unite Researchers and Practitioners in a Community of Experts 

on Impact Assessment. 2012 Berlin Conference on the Human Dimensions of Global 

Environmental Change on "Evidence for Sustainable Development". In: http://www.liaise-

noe.eu/system/files/Berlin%20conference_LIAISE%20approach_final.pdf. 

Kuhn, A., Britz, W., Willy, D. K., van Oel, P. (2014): Simulating the viability of water institutions under 

volatile rainfall conditions – The case of the Lake Naivasha Basin, Environmental Modelling & 

Software, available inline since 16th September 2014 

Lengers, B., Britz, W., (2012). The choice of emission indicators in environmental policy design: an 

analysis of GHG abatement in different dairy farms based on a bio-economic model approach, 

Review of Agricultural and Environmental Studies 93, 117-144 

Nilsson, M., Jordan, A., Turnpenny, J., Hertin, J., Nykvist, T. and Russel, D. (2008): The use and non-

use of policy appraisal tools in public policy making: an analysis of three European countries 

and the European Union. Political Science, 41 (4): 335–355 

Rizzoli, A.E. et al. (2009). Updated version of final design and of the architecture of SEAMLESS-IF 

Report No.47, SEAMLESS integrated project, EU 6th Framework Programme, contract no. 

010036-2, www.SEAMLESS-IP.org, 31 pp, ISBN no. 978-90-8585-590-3 

Schroeder, L. A., Gocht, A., Britz, W. (2014): The Impact of Pillar II Funding: Validation from a 

Modelling and Evaluation Perspective, Journal of Agricultural Economics (in press) 

Wieck, C., Schlüter, S. W., Britz, W. (2012). Assessment of the Impact of Avian Influenza Related 

Regulatory Policies on Poultry Meat Trade and Welfare, The World Economy 35(8): 1037-1052 

http://www.liaise-noe.eu/system/files/Berlin%20conference_LIAISE%20approach_final.pdf
http://www.liaise-noe.eu/system/files/Berlin%20conference_LIAISE%20approach_final.pdf

