GGIG Graphical Interface Generator

Programming Guide

Wolfgang Britz, August 2010

- Version March 2021 -

GGIG Graphical Interface Generator — Programming Guide

The following user guide documents the outcome of a collaborative effort of University Bonn
and the author. Larger parts of the Java code underlying GGIG had been developed over the
years in the context of projects related to the CAPRI modelling system, which received
considerably funds from the EU research framework programs. Following the general policy
in CAPRI, the GGIG pre-compiled code can be used for other scientific projects as well

without charge.

The author would like to acknowledge the contribution of Alexander Gocht, VvTI

Braunschweig, to the CAPRI GUI coding efforts. All errors remain with the author.

GGIG, Wolfgang Britz, Version March 2021 2

http://www.capri-model.org/gui.htm

GGIG Graphical Interface Generator — Programming Guide

Content
OVBIVIBW ...tttk b bbbtttk b bt h e R e et et e bt bbbt et e e e e e 7
Current applications Of GGGcooiiiiiiiei e 11
AN OVEIVIEW 0N the GUI ... 12
The INtErTaCE GENEIALON.......iiie ettt e e eesreesreenbeaneenres 13
TASKS .ttt E bbb n et 13
Mapping controls Setting t0 GAMS ..o e 13
Basic concept of the control definition file ... 14
Tool name, logo, default directories and background COlOr...........cccccviieiiveieiieiicce e, 16
LT 1] (=T o LSS RTUSPRSRRN 17
LI TSSOSO PP TR U TP P URURPRPRPPIN 18
Use of filters for eXplOitations...........ccoiiiiiiiiiiiee e 19
(0101311 £0] 3OS ST T OO PR TP PSTPRPPPPRN 22
Possible fields FOr CONTIOIS ..o e 22
DEPENUEINCIES ...ttt bbbttt bbbt 23
TYPE OF CONIOIS ... bbb 25
LI SRS 26
1= 0T L= (o] OSSP RUPRSUPRTR 27
PANEL ...ttt 27
LI PRSP RPRR ORI PRROTIS 28
CRECKDOX ... 29
FHIESEI /T DIISE ... 30
FIlESEIDIN / AIrSEIDIT ... 31
SINGRIIST ... bbbt 32
Multilist / MUITILISENONZENOoviiiiiiieiieeeeee e 33
RAJIODULIONS. ... 36

GGIG, Wolfgang Britz, Version March 2021 3

GGIG Graphical Interface Generator — Programming Guide

SR et 38
SPINNET et bbb bbbt b e bbbt bbb 39
Table / TableSIMPIE ..o e 40
Layout of the controls on the interface and style options for controls..............cccccvevvinennen. 43

[Lo LT V] (=1 1 USSR 46
HEIP MENU TEBIMS ...ttt 47

LI L] 1] TSRS URPRPPPRPP 47
Links to PDF documents With DOOKMArKScccciiiiiiiiiicicsce e 48
Starting GAMS fromM GGGcoo it re e 49
General INTErfaCe SEIEINGSc..eiveiiieieei et bbb 51
GAMS and R related SEEHINGSoiviieieiieie s 52
SVN TEIALEA SEILINGS ...c.vieiiitieiie ettt e r e e e s ra e sreeeeaneeane e 52
Settings linked to the exploitation t0O0ISccccvveiiei i 53
Meta data NANAIINGooiiii e 54
WHY META QAEAT ... bbbt 54
TECNNICAL CONCEPL......vieieeie ettt s e et e s esaeetesreesbeenbeaneenneas 54
(0] (o] | 7= [0 o ISP 56
Excurse: history of GGIG, CAPRI GUIScoiieiiie et 56
Execution of tasks via a GamsStarter and GamsThreadccoccovvviiieiniicncincscee, 58
Refactoring the MapPiNg Part..........ooveii e 59
VIEWS aS the DASIC CONCEPL......eiiiieiie ettt 60
Data MOAET ...ttt bbbt 61
Clent Dased SOIULIONc..oiiiiiei e 62
The geometry MOEL.........ovv o 62
XML definitions FOr VIBWSoiiiiiiiieieies bbb 64
Why a XML definition files fOr VIEWS?cccoeiiiie i 64

GGIG, Wolfgang Britz, Version March 2021 4

GGIG Graphical Interface Generator — Programming Guide

The structure of the XML definition files for the VIEWS ... 64
GENEIAl COMMENTS ...ttt bbbttt 64
Necessary tags for tabIESooiiiiii e 65
Defining the items of the table ..o 65
Additional tags: <SUDTREMEScciiiiiecic e 67
Additional tags: <AETPIVOL>cooiiiiece e 67
Additional tags: <AETVIEWSc.ociii e 68
Additional tags: KCOO>ciciiii e re e nes 69
Alternative texts for the dimenSIONS..........ccooiiiiiiiiie e 69
Additional tags: SCIONE>cciiicec e 70
Additional tags: SAMOP>vviviiicicee et re e e 70
T g v T[S OSSP 70
Filters for the elements in the different dimensioNnS...........ccocoeiiiiiniiniee e 72
Attaching long texts and filters to elements ..ot 73
INCIUES ..o bbb 73

The structure of the GAMS generated gdx files used by the exploitation tools 74

Loading the data from gaX FIlESccveiiie e 74

Design hints for structured programming in GAMS with GGIG...........ccccooviieiivein e 75

Using information passed from GGIG ..o 75

Structure your program DY taSKSc.eoiiiiiio i 76

One entry points for run SPECITIC SEIINGS.coviiiieiii it 77

SCENAITO BUITOT ...ttt bbb bbbt bt et b e bbbt be e 77
BatCN BXECULION ...ttt bbb bt 78
Generate GAMS dOCUMENTALIONc.eiiiiiiiicii it 78
BACKGIOUNG ...ttt ettt et et e b e nbe e nnes 79
DESITEA PIOPEITIES ...vevveieeeie et et ettt e et e et e e e s s e steeneeese e teeneeaneeneeeneennes 80

GGIG, Wolfgang Britz, Version March 2021 5

GGIG Graphical Interface Generator — Programming Guide

Technical IMPIEMENTALIONc.voiiiiccece e et esneas 80
OVBIVIBW ...ttt bbbt bt bbbt b e e e b bt bt bt et e e e e 81
HaNAIING OF GDX FHES ... 82
TNMEX . h bt et bR 83
RETEIEICES ...ttt bbbt 83

GGIG, Wolfgang Britz, Version March 2021 6

GGIG Graphical Interface Generator — Programming Guide

Overview

The GAMS Graphical Interface Generator (GGIG) is a tool to generate a Graphical User

Interface (GUI) for a GAMS or R project® with five main functionalities:

1.

Generation of user operable graphical controls from XML based definitions. The
XML file defines the project specific controls used and their layout. The user can then
interact with the GUI to change the state of the controls. The state of each control
component such as a checkbox can then be mapped to GAMS code (3SETGLOBALS,
Set definitions, settings for parameters) or to R statements. It combines hence the basic

functionality of a GUI generator and a rudimentary GAMS/R code generator.

Generation of GAMS compatible meta data from the state of the control which can
be stored in GAMS GDX format and later accessed, so that scenario definitions are
automatically stored along with results.

Execution of a GAMS or R project while passing the state of the control to

GAMS respectively R as an include file.

Exploitation of results from GAMS runs by providing an interface to define the
necessary interfacing definitions in text file to load results from a GDX file into the

GGIG exploitation tools. Note that GDX files can also be generated from R.

Access to a set of GAMS related utilities. This include e.g. a viewer for GDX files, a
utility to build a HTML based documentation of the GAMS code or a batch execution
utility.

GGIG is hence steered with xml-based text file and does not require knowledge in a higher

programming language

GGIG was developed to overcome a typical problem when economic models are implemented

in GAMS. GAMS itself, not at least to ensure platform portability, does not allow for

graphical user input (cf. Britz and Kallrath 2012). Run specific settings for GAMS need

therefore to be introduced either by changes to the GAMS project code itself or by adding

settings of environment variables to the GAMS call. Experienced model users — typically the

code developers themselves — know how to change run specific settings in the GAMS code,

! The code can also be used from inside Java, but that feature is not discussed in the documentation.

GGIG, Wolfgang Britz, Version March 2021 7

GGIG Graphical Interface Generator — Programming Guide

and do so typically quite efficiently. As a consequence, they seldom feel the need to develop a
GUI steering their GAMS project. The need to invest in GUI development might have even
decreased as the GAMS IDE now offers some basic functionality often found in project
specific GUIs, such as starting GAMS, inspecting parameters found in the listing file or

viewing the context of a GDX file.

However, a GAMS code only solution for an economic model typically poses a serious entry
barrier to newcomers for two reasons (cf. Britz 2014a). Firstly, possible users are often not
familiar with GAMS. But even with some elementary knowledge of the language, they might
face problems understanding project specific GAMS code making use of advanced GAMS
features. Secondly, they face the challenge to familiarize themselves with the specific code of
the project (file structure, symbol names, set elements ...). In order to use the GAMS code for
applications, a user needs to learn enough to know exactly which specific code changes are
necessary to implement e.g. scenarios in a given project. Large and/or complex GAMS code
of projects might basically exclude its usage beyond some core developers. Accordingly,
institutions or tool developers often observe that promising tools are only used by a few
specialists, reducing returns to their investment in tool development and maintenance (Nilsson
et al. 2008, Janssen et al. 2012). Possible other users often shy away from the high learning
costs and/or fear to generate, analyse and present results based on a black box where it is

unclear how to enter exactly a scenario and how to access their results.

It is therefore not astonishing that some tools based on GAMS (and also on other modelling
languages) have developed their specific GUIs (cf. Britz et al. 2015). These GUIs let the user
steer the tool with a touch & feel comparable to other programs running on modern windowed
operating systems. However, writing a GUI for a larger project firstly requires considerable
programming skills, often not found with the economic modellers themselves. Secondly,
developing a good GUI design and then to code, debug and maintain a GUI can be a rather
costly exercise. As a consequence, typically only rather large and well-funded tools have
found and invested the necessary resources to develop such GUIs. CAPRI and runGTAP

provide some examples. Such project specific GUIs are typically very powerful, but tend also
to be too tool specific to be easily modified to fit to another (GAMS) project, and require an

experienced software programmer for any changes in the GUI layout.

That renders it inviting to think about generic tools able to generate a GUI which can interface
to GAMS. The coding effort can then be shared across projects, and user might even reduce

learning costs if they use similar GUIs for different tools. A well-established example for such

GGIG, Wolfgang Britz, Version March 2021 8

http://www.capri-model.org/gui.htm
https://www.gtap.agecon.purdue.edu/products/rungtap/default.asp

GGIG Graphical Interface Generator — Programming Guide

a tool is the “GAMS Simulation Environment (GSE)” by Wietse Dol (Dol 2006). GSE is
quite general: it incorporates features of an Integrated Development Interface (IDE) as well as
exploitation features. It is based on specific “tags” introduced in the GAMS code. GGIG is
certainly not a direct competitor to GSE: GSE offers different functionality and is more IDE
oriented. It might however be easier to embed some simple steering settings with GGIG into
an existing project compared to the tag based concept of GSE. GSE was in the past a
commercial product distributed with a license but can now be downloaded for free, and user
should first check carefully their requirements and what is offered by GSE or GGIG before

taking a decision for one the two GUI generators.

An example of a completely different approach to a GUI for modelling tools offers
SEAMLESS-IF (Rizzoli et al. 2009) with its focus on component linkage. Based on OpenMI,

it however requires the development of an OpenMi compatible wrapper around the GAMS
project itself. Concepts such as the SEAMLESS-IF are therefore probably only suitable for
larger projects focusing on combining components based on different programming
languages. Furthermore, SEAMLESS-IF is based on a client/server implementation and

requires specific software licences for deployment.

GGIG might hence be seen as a quite simple and easy to use tool to generate GUIs for GAMS
projects. If all GGIG features are used, it can however host quite complex projects. The new
GUI for CAPRI built with GGIG offers an example for a rather complex implementation.

As mentioned above, a second important contribution of GGIG is to mechanize to the largest
extent the generation, storage and later inspection of meta data underlying a scenario and the

related result set, overcoming an often-encountered weakness in (economic) models.

And thirdly, GGIG offers a bridge between the powerful CAPRI exploitation tools and other
GAMS based models. It draws on the experiences with Benlmpact, a Regionalized
Agricultural Sector Model for Benin (Britz and M’Barek 2003), MIVAD, a hydro-economic
model for a river basin in Morocco (Heidecke and Heckelei 2010) and the village CGEs
developed in Advanced-Eval (Britz 2009). These GAMS based models respectively Java

based GUIs used already before GGIG the CAPRI exploitation tools to inspect model results,
but did not add any GUI functionalities to also steer their models. The experiences with these
examples can hence be seen as the starting point for the development of GGIG in order to

expand beyond a pure, project adjusted implementation of the CAPRI exploitation tools.

GGIG, Wolfgang Britz, Version March 2021 9

http://www3.lei.wur.nl/gse/
http://www.seamlessassociation.org/index.php?option=com_content&view=section&id=14&Itemid=69
http://www.seamlessassociation.org/index.php?option=com_content&view=section&id=14&Itemid=69
http://www.capri-model.org/gui.htm
http://www.impetus.uni-koeln.de/fileadmin/content/veroeffentlichungen/projektberichte/IMPETUS_Zwischenbericht_2008.pdf
http://www.impetus.uni-koeln.de/en/morocco/livelihood-security/pk-ma-e1.html
http://www.advanced-eval.eu/

GGIG Graphical Interface Generator — Programming Guide

Some specific skills and eventually serious refactoring of the reporting part of an existing
model are necessary to benefit from the full functionality of the GGIG exploitation tool. It
therefore pays typically off to start using GGIG for exploitation from the beginning (the same
holds probably also for GSE and other GUI generators to be linked to GAMS or R code). But
at least, no skills in coding in a higher programming language such as Java are necessary to
define the necessary interfaces between the GAMS project and the exploitation part. The
latter offers interlinked tables (with selections, sorting, outlier control, pivoting), different

type of graphs, maps and flow maps.

Additionally, GGIG features a set of utilities originally developed for CAPRI such as HTML
based documentation of the GAMS code, a GDX viewer or a batch processing mode.

The development of GGIG would have been impossible without the continued funding for the
maintenance and development of CAPRI by the EU Commission, which also let to the
emergence of the CAPRI GUI and exploitation tools. That code base was the starting point for
GGIG. I would also like to mention the contribution of Alexander Gocht over the last years to
coding GGIG.

The main parts of GGIG are graphically depicted below. At its core stands the GGIG Control
generator, based on Java code. Based on a XML based definition file provided by the project,
it generates a project specific GUI which can be operated by the user. The state of these
controls such as numerical settings, on/off settings or n of m selection can be passed to
GAMS or R by an automatically generated include file which also contains automatically
generated meta data. The user can also execute GAMS or R from the GUI. The GUI can
equally load numerical results and meta data in a specific GDX viewer. The latter supports
“view definitions”, i.e. pre-defined reports to exploit the results. The details of the different

elements are discussed below.

GGIG, Wolfgang Britz, Version March 2021 10

GGIG Graphical Interface Generator — Programming Guide

Controls and Settings GGIG
definition file Control
Generator

GGIG

A

GAMS

Project specific [

include file < GUI
|
L1 v
GAMS Exploitation
executable tools
4
GAMS
project code « Meta d_ata

Numerical results

Diagram: Overview on information flow in GGIG

Current applications of GGIG

Since the first prototype, GGIG has been successfully implemented in a number of projects,

examples are listed below in chronological order:

FarmDyn: a fully dynamic single farm model (cf. Lengers and Britz 2012)

A small, spatial multi-commodity model for world trade of cooked and uncooked

poultry meat with a focus on trade bans related to Avian Influenza, developed in the
context of the NTM-Impact project (Wieck et al. 2012).

A EU wide layer of regional CGEs with a focus on Rural Development measures on
the second pillar of the CAP, which is now incorporated into CAPRI (cf. Schroeder et
al. 2014).

LANA-HEBAMO: A Hydro-Economic model for the lake Naivasha in Kenya (Kuhn
et al. 2014).

The FADNTOOL project which combines a set of economic tools for simulating

policy impacts based on the FADN data.

GGIG, Wolfgang Britz, Version March 2021 11

http://www.ilr.uni-bonn.de/em/rsrch/tools_e.htm#FARMDYN
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9701.2012.01461.x/abstract
http://www.ilr.uni-bonn.de/agpo/rsrch/ntm/ntm_e.htm
http://www.ilr.uni-bonn.de/agpo/publ/techpap/LANA-HEBAMO-documentation.pdf
http://www.fadntool.eu/

GGIG Graphical Interface Generator — Programming Guide

A modular and flexible Computable General Equilibrium model CGEBox

An Agent Based model for structural change in agriculture, which is realized in
GAMS, but uses GGIG as its user interface.

BW-GLOBAL-FOR, a Multi-Commodity model for wood and wood based products
(Britz et al. 2014)

IEM-CAP by JRC-IPTS, PMP-based single farm models for the EU drawing on the
FADN data base

AGRISPACE, a recursive-dynamic agricultural sector model for Norway

PEM by the OECD, a Multi-Commodity model linked to the OECD PSE/CSE data

base
METRO by the OECD, a CGE model with a focus on trade in value added

The GLOBIOM model by I1IASA

And last not least, the GUI of CAPRI (Britz 2014b) now is implemented in GGIG.

An overview on the GUI

'E‘CgeRegEU+[t\britx\capn\gams] . [=o®| = |

File Settings Utilities

GGIG

CgeRegEU+ tasks General settings | Methodological switches|
Calibrate CGE CgeRegEU+ General settings.
© Run policy experiment

Run test shocks

GAMS Graphical User Interface Generator

ILR

Institute for
Food and
Resource Economics

Scenario description | cge_rd_plus10 -

Use seperate threads V|

[Compile GAMS][Start GAMS ﬂ Stop GAMS H Exploit results

Wolfgang Britz
2012
Universty Bonn

‘geRegEU+

| Ini file : regcge.ini |User name : undefined | User type : runner

GGIG, Wolfgang Britz, Version March 2021 12

https://www.ilr.uni-bonn.de/em/rsrch/cgebox/cgebox_e.htm
http://www.ilr.uni-bonn.de/agpo/rsrch/abmsim/abmsim_e.htm
http://www.ilr.uni-bonn.de/agpo/rsrch/forest/forest_e.htm
https://ec.europa.eu/jrc/en/publication/eur-scientific-and-technical-research-reports/eu-wide-individual-farm-model-common-agricultural-policy-analysis-ifm-cap
http://www.ilr.uni-bonn.de/em/rsrch/agrispace/agrispace_e.htm
http://www.oecd.org/tad/agricultural-policies/39265834.pdf
https://www.oecd.org/tad/policynotes/METRO-OECD-trade-model.pdf
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjC_rnEsLzvAhVaAmMBHe7cAM0QFjAAegQIAxAD&url=https%3A%2F%2Fiiasa.github.io%2FGLOBIOM_FABLE%2FGUI.html&usg=AOvVaw0T1eVnCLeTCuufaM40H69M
http://www.capri-model.org/docs/Gui2014.pdf

GGIG Graphical Interface Generator — Programming Guide

As shown in the example above, the GUI consists a few elements:

1. A menu bar which allows to change some settings (see the section on general
interface settings+)

2. A workstep and task selection panel on the left-hand side where the user can select

between different tasks belonging to the project.
3. Aright-hand side panel which either shows:

I. The generated controls, a button panel to start GAMS and a window

in which the message log from GAMS is shown
ii. A panel to select data to view and to start their exploitation
lii. The exploitation tools
4. A small window in the left lower corner which present a logo.

Whereas the elements 1. and 3.ii and 3iii. are not project specific, the work steps and tasks
available in 2. and the controls shown to the user in 3.i. are generated in a project specific

initialisation file. The details of that file — which is core of GGIG — are discussed below.

The interface generator

Tasks

Tasks are central elements in GGIG. Each control can belong to one or several tasks, and each
task might have its own GAMS or R process. That allows steering even rather complex tools
which combine different GAMS or R projects based on one GGIG implementation. Splitting
up a project into several tasks supports a structured development of the GAMS/R code as
either separate GAMS/R files with a clear purpose are generated or a GAMS/R file consists of

blocks which belong to certain tasks.

When the user selects a task, only the controls belonging to that task are shown to the user,
easing the handling of the GUI. Tasks can be combined into work steps to further structure the

work flow in a project.

Mapping controls setting to GAMS

Controls are user operable, graphical elements. A few examples are shown below.

GGIG, Wolfgang Britz, Version March 2021 13

GGIG Graphical Interface Generator — Programming Guide

v

201520302045 2060 20752090

Last vear =
Y Milk price {cent/litery | 35 %

T
Use hasHerds indicator variables Solver ﬁ"
Diagram: Example of controls generated with GGIG

In the case of GGIG, these graphical controls are used by the user to define textual and
numerical settings which in turn define run specific settings for a GAMS/R project. GGIG

offers five functionalities related to these controls and their interactions with a GAMS project:
1. It generates the controls from a definition file on a windowed program interface.
2. It offers the necessary code to intercept user operations on the controls.

3. It maps the settings of the controls based on the user input to as sequence of GAMS or

R statements, which can be included into a GAMS/R project to generate a specific run.
4. It allows execution of GAMS or R.
5. It offers a GDX viewer which supports the definition of pre-defined reports.
The overview on the process is shown in the diagram above.

In order to allow the run specific settings to enter a specific GAMS project, the generated
include file should define the sole entry point of run specific information. The state of the
controls — passed to the include file - should hence define all the necessary information for a
specific run. The GAMS code should accordingly not allow for or require additional changes
to generate a “scenario”, i.e. a specific run. It is however easy to use a text control in GGIG to

enter directly the name of another file to include in the GAMS/R code.

The include file generated by GGIG which reports the state of the controls is overwritten each
time the user starts the GAMS project.

Basic concept of the control definition file

GGIG supports two formats for definitions file: XML based property files or standard Java
property files. The later are only supported for backward compatibility and should no longer
be used for new GGIG projects.

GGIG, Wolfgang Britz, Version March 2021 14

GGIG Graphical Interface Generator — Programming Guide

XML property file

The core of GGIG consists of the control definition file. The XML property file defines the
controls, tasks, etc. based on XML tags. As the XML file is parsed by a standard Java XML

parser, these tags can additional by stored in different lines, see example below:

{control>
<order:1118</order>
{Type>singlelist{/Type>
{Title>First year<{/Title>
<Value>1984</Ualue>
<0ptions>1984,1985,1986,1987 ,1988,1989,1990,1991,1992,1993,1994 1995 1995 ,</0ptions>
{gamsHame>FirstYear</gamsHame>
{tasks>Prepare national database,
Finish national database,
FSS selection routine,
Build regional time series,
Build regional database,
Build global database,
Generate trend projection,
Generate farm type trends,
{ftasks>

<fcontrol>

The different tags (or keywords) are discussed in detail below.
Standard Java property files (deprecated)

It follows the basic implementation of a property file in Java. Each line thus consists of a key
— value pair, separated by an equal sign. The definition of the controls is stored in the same
file along with general settings such as the name of the GAMS project, directories, the user

name etc..

For each control, one line is used. That line comprises all the necessary information to

generate the control, as well as to store the current setting.

The control definition file is text based and can hence be edited with any text editor. Most of
the settings — with the exemption of the definitions of the controls themselves — can also be
entered by the user via the controls on the GGIG interface. These project independent controls
are to a larger extent borrowed from the CAPRI user interface. On top, a first rudimentary

control editor is embedded in the tool.
Call of GGIG
In a normal installation, there are two files:

1. One default file with the control definitions and related default values. That file should

be typically under version control.

2. A second file which is installation specific, it will solely store the values entered by

the user on the interface and will be in the Java generic “ini” format. Its content is

GGIG, Wolfgang Britz, Version March 2021 15

GGIG Graphical Interface Generator — Programming Guide

updated each time the interface is closed, the next run will re-load the control and

other setting from that file. Thus, that file should not be under version control.
A typical call will therefore look like:
Java Gig.jar project.ini project_default.xml

Where the first argument relates to the project “ini” file which stores the current user settings
(it will be automatically updated when the interface is closed). The second argument defines
the GGIG definition file. It is hence possible to host several GGIG based installations in one

directory where the jars etc., are stored.

Tool name, logo, default directories and background color

The following three XML tags allow setting the tool name, the logo shown on the interface

and the background colour:

{toolHame><attr>FADHTOOLL/attr></toolNHame>
<logo><attr>fadntool_logo.jpg</fattr></logo>

<backgroundColor><attr>255,1408,1808<{/attr>{/backgroundColor>

Equally, the icon shown in the task bar can be set

{icon><{attr>dairydyn._gif{/attr></icon>
The option dialog comprises tabs for system directories and executables:

<defaultDirs><attr>model,res,dat,Policy editor<{/attr><{/defaultDirs>
{defaultExes><{attr>GAMSExe<{/attr><{/defaultExes>

| £] option - O

User Settings GTAP In GAMS V8 System Settings GAMS SVYN Other options

Mode! files directory ~\gams

Result directory ~\results

| Data flles directory -\data

Policy editor directory ~\gams\scer|

The default for the directories is “model, res, restart, dat”. The abbreviation are kept for
legacy reasons. As seen above, additional directories can be added. The XML definition file
can refer to these settings in the definition of control, e.g.

GGIG, Wolfgang Britz, Version March 2021 16

GGIG Graphical Interface Generator — Programming Guide

<control:
{type>fileselDir<{/type>
{title>Scenario file{/title>
<{value>base_scenariosinoshock.gms<{/value>
{options>¥modeldirZisceni=.qgmns<{/options>
<gamsHameZXshock</gamsHame>
{tasks>Simulation,Sensitivity analysis</tasks>
<fcontrol’

The “defaultsExe” field adds text fields and file selection button to the tab “GAMS” as shown

below:

(&) option - O

User Settings GTAP in GAMS V8 System Settings | GAMS VN Other options

path to GAMS.exe n:\\soft\gams\gams.exe

Path to HartoDGX.exe
GAMS scratch Directory
GAMS Options

Number of processors used in GAMS Get the number of processors ... 0 :

Processor speed relative (100% ~ 2.4 GH Intel core 2 100~

Worksteps

Worksteps allow to group tasks, and thus represent the top level of structuring actions in a

tool. The following attributes are possible
Name Name of the workstep shown as selectable radio button (required)
Tasks List of tasks

PDFLink Context sensitive link as via a PDF bookmark

<workstep>
{name>Build database<{/name>
{tasks>Prepare national database,
Finish national database,
F55 selection routine,
Build reqgional time series,
Build reqional database,
Build global database,
Build HSMU database
<ftasks>
<{fworkstep>

The work step selection is based on a set of radio buttons in a panel in the upper left corner of

the generated GUI. It is not necessary to define work steps in a project.

GGIG, Wolfgang Britz, Version March 2021 17

GGIG Graphical Interface Generator — Programming Guide

Tasks

The control definition file must define a list of tasks (such as calibrating the model and

running the model) for the project.

A task can have its own GAMS or R file to start, its own result directories and its own set of
controls. Each control can however be shared by several tasks.

<task>
{name>Run test shocks with CGE</name>
{gamsFile*regcge .gms</gamsFile>
{incFile*regcge settings<{/incFileZ
{regionDim}8<{/reqionDim>
£Dim5Dim>1</Dim5Dim>
{activityDim>2<{/activityDim>
{productDim>3<{/productDim>
<scenDim>4</scenDim>
<yearDim>5</yearDdim>
<useMeta>true<fuseMeta>
{resdir»regcge</resdir>
{filemask>res_[B-9]{4}testShocks.{1}gdx5</Filemask>

<ftask>

The tasks are put in the order as they are defined in the control file on the left-hand side of the

interface, below the work step panel (if work steps are defined):

DAIRYDYN [..\gams]

T

File Settings Utilities
DAIRYDYM tEISkS Geﬂera| set

(O Calibrate DAIRYDY

() single farm run

() Exploit results

The following attributes are possible for a task
Name defines the name of task, shown on interface (required)
gamsFile defines the name of the GAMS project to start (optional)
resDir result directory where the results are stored (optional)

filemask regex string used filter the files shown in the scenario exploitation

boxes for the task (required)
incFile defines the name of include file used by the task (optional)

gdxsymbol defines the GAMS symbol (set, parameter) to load for exploitation

GGIG, Wolfgang Britz, Version March 2021 18

GGIG Graphical Interface Generator — Programming Guide

{logical}dim position of the logical dim in gdxsymbol, where logical=region,
activity, product, year, scen, dim5..dim9
filters filters for scenario input, see below
xmltabledef task specific view definition file in XML format
PDFLink Context sensitive link as via a PDF bookmark
If no gamsFile,incFile or resDir are given, the general ones defined in the ini-file are used.

Tasks without a GAMS or R clearly cannot be executed, but they can be used to exploit GDX

files. That allows to e.g. to explore different parts of data bases.

Use of filters for exploitations
Filters are used to

1. To let the user select from the GDX files which are potentially generated by the task

based on a specific content selection, .e.g. only files from a specific year

2. To introduce a filter on the GDX element loaded in the viewer, e.g. to only load

records for a specific country
A filter definition consists of 3 fields:

1. The logical dimension to which it is applied: {region, activity, product, year, scen,
dim5}

2. The selection control which is used for the filter
3. The type of filter:

a. “Starts_with” or “ends_with” for GDX element filters, i.e. only such
records will be loaded where the item describing the logical dimension starts

with one of the selected keys.

b. “File_Starts with” will selected input files which match the selection of

another control, such as in the following example:

<dataSetSel><attr>Type=fileSel;Title=Dataset;Options=Y%datdi r%\“:“Tg(:I).(';'r:.;r-\/ e;i;Eééllé;?\ERe ;</attr></datasetSel>
--- 912 'I'ine(s? not displayed =--==--=--emmmmmmme
<filter-Data set,datasetsel,file_starts_with</filter>_ = L. .

In the example above, a control with the same “Data set” is generated,

comprising the file names found under “%datdir%*.gdx, and only results files

GGIG, Wolfgang Britz, Version March 2021 19

GGIG Graphical Interface Generator — Programming Guide

with a name starting with the name of the selected file will be shown in the

drop-down boxes for scenarios:

Scenario 1 |57x45_eth_notariffs

Scenario 2 |57x%45_noshock

Dataset 57X45 - Scenarie 8

Note: the Java program will attempt to locate in the GUI folder a XML file
with the name of the selected file and copy it to “generated.xml”. That can be
used to generate from GAMS a file with e.g. regional and product definitions
matching a specific data base and use <xi:include href="generated.xml”/> in

the view definition file to dynamically load these definition into the views.

c. Otherwise, a pair of integer values which describe on which position of the file
names the selected key should be found plus either “skip” for only using selecting

files or “merge” to merge records from the chosen GDXGs.

The screenshot below shows an example generated from the following filters:

<filter>region,CountriesSel,starts with</filter>
{filter>Base year,BaseYearsSel,?,8,skip</Filter>
{filter>Year,S5imYearssSel,?,18,skip</Ffilter>

The first filter “starts_with” does not affect the file selection, but will affect which records
from the selected files are loaded in the viewer. In the example shown below, where the filter
controls fit to the definitions above, only records where the region key starts with “BL” will

be shown to the users.

The other two filters will skip files where the base and simulation years do not match the
selection. In our example, the base year is stored as a two digit key on position 7 and 8, and
only files with a “04” are in the drop down box for the scenarios. Similarly, only results for

the simulation year “20” are selected.

GGIG, Wolfgang Britz, Version March 2021 20

GGIG Graphical Interface Generator — Programming Guide

Country selection

DK "Denmark” o
DE "Germany”

EL "Greece”

ES "Spain”

FR "France”

IR “Irland”

IT “Ttaly”

NL "The Netherlands™
AT "Austria” b

Bas year selection (08

Simulation year selection

I - |
21
22
23

Scenario1 |

Scenario 2

Scenario 3

Scenario 4

Scenario 5

L

RES_0_0420MTR_RD
RES_0_0420TEST

RES_0_0420TSTCAL
RES_2_0420COMBINED_WTO_BILATERAL
RES_2_0420DDA
RES_2_0420DE_MTR_RD

Normally, the name of the file will be used to characterize the “scenario”. The “merge” is

made for the case where several GDX files should be combined and the file name does not

distinguish model runs. An example offers the downscaling component of CAPRI: it

produces in separate GAMS run for the same scenario one file for each country which

comprise rather huge data sets. The “merge” mode allows combining these result sets

together.

GGIG, Wolfgang Britz, Version March 2021

21

GGIG Graphical Interface Generator — Programming Guide

Controls

Possible fields for controls

The necessary information for each control is stored in different tags for each control

definition file. The controls are put on the interface in the order they are given in the XML.

The following fields are available:

Type defines the type of control (required). The different types are discussed below
in detail.

Title defines the description of the control as seen by user (required)

GamsName defines the name of global settings resp. SET name (optional)

Value pre-selected setting(s) (optional)

Options list of available options (required where applicable)

Range Min, max, increment, major ticks; or number of rows shown (required where
applicable)

Tasks List of tasks to which the control belongs. If empty, it belongs to all tasks

Tooltip A tooltip text hovering over the control (optional)

Pdflink Link to a pdf file and chapter to open on mouse over (optional)

Selgroups Selection list opened by pop-up menu (see Multilist control)

Style Different style options (optional)

Disable Control is blocked for input — useful to show settings on interface which are
should be sent to GAMS for a specific task (optional)

dependsOn Defines inclusive O dependencies to other settings of other controls (optional)

dependsOnAll Defines AND dependencies to other settings of other controls (optional)

GGIG, Wolfgang Britz, Version March 2021 22

GGIG Graphical Interface Generator — Programming Guide

Dependencies

The <dependsOn> and <dependsOnAll> fields allows to define dependencies between

controls, i.e. under which settings of other controls the current control is visible or enabled.

The value of these fields comprises a list of trigger control names, and for each trigger the
possible settings which render the current control visible respectively enabled. The controls
are separated by a forward slash “/”. The settings for each control are separated from the
control name by a double point; the settings themselves are separated by comma. The settings
describe an inclusive OR relation, i.e. the control is shown if one of the listed settings is
currently chosen. For each trigger control, it can be defined if the dependent control should be
rendered visible and enabled, and a default value can be set if the control is rendered invisible

or disabled.

In the following example, the dependent control is triggered by the control named “Standard
GTAP model”. Only if the value of that trigger control is “false”, the dependent control is

enabled. Otherwise, its value is set to “comparative static”.
<dependson>Standard GTAP model:false:enabled:Comparative static</dependsons

With the <dependsOn> field, the controls also are checked for inclusive or, i.e. if for one of
the controls one setting matches, the current control is shown. The following example shows a
tab which is only enabled if one of the listed farm branches is selected by the user:

{control>
<Type>Tab</Type>
{Title>Animals<{/Title>
<{tasks>Single farm run, Calculate MACs,Experiments dairy</tasks>
<dependsOn>Farm branches:Dairy,Fattners,Sows</dependsOn>
<fcontrol>

The following example disabled a tab if a checkbox titled “GHGs” is not checked:

<control>
{Type>tab</Type>
{Title>GHGs and MACS</Title>
{tasks>all<{/tasks>
{depends0On>GHGS:Erue</dependson>
</control>

The <dependsOnAll> field checks that for all controls at least one setting matches. In the
following example, the panel is only shown if one of the listed farm branches and one of the

listed crops are selected.

GGIG, Wolfgang Britz, Version March 2021 23

GGIG Graphical Interface Generator — Programming Guide

<control>
<Type>spinner</Type>
<Title-Grassland</Titlex>
<Value>40</Value>
<range>0,500,1</range>
<options>int</optionss>
<gamsName >nGrasLand</gamsName >
<tasks>%allTasks%</tasks>
<style>vAlignment:Spread,noOutputIfInvisible:true</style=
<dependsonAll-Determination of land endowment:Total arab and grass land/Farm branches:Dairy,MotherCows,Beef:any</dependsonaAll=
</control>

The <dependsOnAll> field can also be used to only show the control if several values from a
multi-selection control are selected, by listing all necessary combination of the control name
and the settings, e.g.

{control>

<Type>panel</Type>

{Title>Cereals</Title>

<tasks>S$ingle farm run, Calculate MACs<{/tasks>

<dependsOnfAll>Farm branches:fArable/Crops:WinterCere,SummerCere,MaizCorn/Farm branches:Dairy</dependsOnAll>
{/control’

In the above case, the panel would only be shown if both the “Arable” and the “Dairy” farm

branch would be selected, and one of the crops shows is chosen.

The values for the dependent control on visible tabs are always passed on to GAMS or R,
even if it is currently not visible (or enabled). That eases writing the GAMS code as all
$setglobals and sets defined via the interface for any combination of possible control settings
are still declared. But clearly, the coder should only use these settings in the code if a default
value is defined. Otherwise, settings from previous runs will be comprised in the include file

which can neither been seen respectively changed by the user nor have a defined value.

In order to exclude that control values of invisible controls on active tabs are outputted to

include, file use the style attribute “noOutputlflnvisible™:
<style>vAlignment:Spread,noOutputIfInvisible:true</style-

In order to output also the values of controls on currently active tab, use the following
attribute:

<inactiveSettingsToIncludeFiles<attr>true</attr></inactiveSettingsToIncludeFile>

A specific type of dependency provides the population of tables, lists and combo boxes from
GDX files. In case of such dependencies and a change in the state of the trigger component,
the dependent component will be rebuilt

<dependson>Input file (*.gdx)</dependson:

GGIG, Wolfgang Britz, Version March 2021 24

GGIG Graphical Interface Generator — Programming Guide

Type of controls

The following types of controls are available. The related JAVA swing JComponent is shown

in bracket.
Tab
Separator
Panel

Text
Checkbox
Singlelist
RadioButtons
Filesel

FileselDir

Multilist
MultilistNonZero
Slider

Spinner

Table

SimpleTable

Introduces a new tab on the tabbed plane hosting the controls

to structure a pane with control (JLabel in an JPanel with a border)
the next controls are shown together on a panel

to enter a free text (JTextField)

for on-off type of settings (JCheckBox)

for 1 of n selections (JList in a JScrollPane)

for 1 of n selections (Group in JButton, vertically aligned)

for 1 of n selections of a list of files (JList in a JScrollPane)

for 1 of n selections of a list of files found potentially in sub-directories,

preceded by a sub-directory lists (two JList in a JScrollPane)

for n of m selections (n=0..m), (non editable JComboBox)

for n of m selections (n=1...m), (nhon editable JComboBox)

for integer value selection from a range of values (JSlider)

for floating or integer value selection from a range of values (JSpinner)

to enter floating point variables in a two or three-dimension parameter,

comprises pivot possibilities (JTable)

to enter floating point variables in a two or three-dimension parameter,

no pivot possibilities (JTable)

GGIG, Wolfgang Britz, Version March 2021 25

GGIG Graphical Interface Generator — Programming Guide

Tab
Purpose

Used to structure the interface by grouping controls on an input pane: introduces a
new tabbed plane to which controls following are then added

Applicable fields:
Title, Tasks

Control optic:

General settings | Farm Settings | Market settings | Algarithm

Remarks:

1. The user can only see one of the tab pane at any time — care should hence be given to
keep the number of tabs and the assignment of controls to tabs such that a user can

easily check all key inputs.

2. Tab names should be short.

GGIG, Wolfgang Britz, Version March 2021 26

GGIG Graphical Interface Generator — Programming Guide

Separator
Purpose

Used to structure the interface, gives a title for the next block of controls and keeps
them together (top to bottom)

Applicable fields:
Title, Value, Tasks

Control optic:

\
il
| Settings for objective function

Example definition:

<control’>
<order>2818</order>
{Type>Separator<{/Type>
<Title>Supply model</Title>
{tasks*Baseline calibration market model,
Baseline calibration supply models,
Run scenario with market model,Generate expost results
Run scenario without market model</tasks>
<fcontrol>

Panel
Purpose

Used to structure the interface, starts a block of controls which are ordered from top
to bottom. Similar to separator, but not titted. One separator can span over several

panels.
Applicable fields:

Tasks

GGIG, Wolfgang Britz, Version March 2021 27

GGIG Graphical Interface Generator — Programming Guide

Text

Purpose

Allows the user to enter text. Used e.g. to name the output generated by a run.
Applicable fields:

Title, Value, Tasks, Style

Control optic:

Scenario description |my first scenario

Possible value:

Any text allowed
User action:

Edit with keyboard
Example definition:

{control>

<order>1458<{/order>

{Type>text</Type>

{Title>Alternative GAMS license file for GHG emission estimation<{/Title>

<Value>gamslice_cplex</Value>

<0ptions> </Options>

<range>@<{/range>

<gamsMame>altLicense<{/gamsName>

<{tasks>Baseline calibration market model,Run scenario with market model,Generate expost results{/tasks>
<fcontrol>

Output to GAMS:

$SETGLDBhL Scenario_description my first scenario

Note:

If the text entered refers to an existing file, it is recommended to use a filesel control

instead.

GGIG, Wolfgang Britz, Version March 2021 28

GGIG Graphical Interface Generator — Programming Guide

Checkbox
Purpose

Used for on/off settings, i.e. in cases where one of two options must be chosen, e.g.
in cases of project modules which can be used or not (1 of 2). Cannot be used for 1

of n selections where n > 2 — use a List instead.
Applicable fields:
Title, GamsName, Value, Tasks, Style

Control optic:

Use branching priorities []

Possible value:

true, false

User action:

tick / untick box with mouse

Example definition:

<control>
<order>1828<{/order>
{Type>checkBox</Type:>
{Title>Generate GAHS child processes on different threads</TitleX
<Ualue>true</Ualue>
<gamsHame>threads<{/gamsHame>
{tasks>
Build HSHU database,
Run scenario with market model,Generate expost results
Run scenario without market model,
Baseline calibration supply models,
HSHMU baseline,
Downscale scenario results,
<ftasks>
<fcontrol>

Output to GAMS:
#SETGLDBHL Priorities false

Note: True / False can be also outputted as ON / OFF to the include file for all

controls. Use the following attribute:

<useOnOff><attr>true</attr></useonoff-

GGIG, Wolfgang Britz, Version March 2021 29

GGIG Graphical Interface Generator — Programming Guide

Filesel / Dirsel
Purpose

Used for 1 of n selections of a list of files respectively directories. That is e.g.
interesting when the user can choose from a list of pre-existing scenario definitions in

GAMS files or to select a directory from which different data files are loaded.
Applicable fields:
Title, GamsName, Value, Options, Tasks, Style

Control optic:

Scenario description |cge_rd_plusid

Note: Drop down list will appear if the user clicks on arrow.
Possible value:

Defined by the file selection string in options field, .e.g
.\\gams\\pol_input\\cge_*.gms. The file extension fill be automatically removed from
the items.

User action:
tick / untick one of the selection possibilities with mouse

Example definition:

<control>
<order>1818<{/order>
{Type>filesel</Type>
{Title>Scenario description{/Title>
<Ualue>HTR_RD</Value’>
<Options>..\gams\pol_inputi=.gms</0ptions>
<{range>B8<{/range’>
<gamsHame>result_type</gamsHame>
{tasks>Baseline calibration market model,
Baseline calibration supply models,
HSHMU baseline,
Run scepario with market model,Generate expost results
Run scenario without market model,
Run scenpario only with market model
Downscale scenario results
{/ftasks>
<tooltip>Name of the scenario file to run. The results will be stored under the name as well.<{/tooltip>
</fcontrol’

Output to GAMS:

$SETGLDEHL scenDes cge_rd_noChg

GGIG, Wolfgang Britz, Version March 2021 30

GGIG Graphical Interface Generator — Programming Guide

fileselDir / dirselDir
Purpose

Used for 1 of n selections of a list of files respectively sub-directories, potentially from
sub-directories. That is e.g. interesting when the user can choose from a list of pre-
existing scenario definitions in GAMS files, or to define sub-directories from which

data will be loaded
Applicable fields:
Title, GamsName, Value, Options, Tasks, Style

Control optic:

. Dir:
Scenario file Files: -
* base_scenarios\noShock -

Note: Drop down lists will appear if the user clicks on arrow.
Possible value:

Defined by the file selection string in options field, .e.g
.\\gams\\pol_input\\cge_*.gms. The file extension fill be automatically removed from
the items.

User action:
tick / untick one of the selection possibilities with mouse

Example definition:

{control>
<{Type>fileselDir</Type>
<Title>Scenario description{/Title>
<Ualue>mtr_RD</Value’
<0Options>%modeldir%\pol_inputy*.gms</0ptions>
<range>8<{/range’
<gamsHame>result_type</gamsHame>
{tasks>Baseline calibration market model,
Baseline calibration supply models,
Baseline calibration farm types,
HSHU baseline,
Run scenario with market model, Run scepario only with market model,Generate expost results
Run scenario without market model,
Run scenario only with market model
Downscale scenario results
</ftasks>
<tooltip>Hame of the scenario file to run. The results will be stored under the name as well.<{/tooltip>
</fcontrol’

Output to GAMS:

$SETGLDBHL scenDes cge_rd _noChg

GGIG, Wolfgang Britz, Version March 2021 31

GGIG Graphical Interface Generator — Programming Guide

Singelist
Purpose

Used for 1 of n selections. Used in cases where more than 2 mutually exclusive
values for a setting are available.

Applicable fields:
Title, GamsName, Value, Options, Tasks, Style

Control optic:

Choose model type b N

Note: Drop down list will appear if the user clicks on arrow.
Possible value:

Defined by options field

User action:

tick / untick one of the selection possibilities with mouse

Example definition:

<control>
<order>1118<{/order>
<Type>singlelist</Type>
<Title>First year</Title>
<Value>1984</Value>
<0ptions>1984,1985,1986,1987,1988,1989,1996,1921,1992,1993,1994,1995,1996,</0ptions>
<gansHame>FirstY¥ear</gamsHame>
<tasks>Prepare national database,
Finish national database,
F35 selection routine,
Build regional time series,
Build regional database,
Build global database,
Generate trend projection,
Generate farm type trends,
<ftasks>

<fcontrol>

Output to GAMS:
$SETGLOBAL Choose_model_type PE
Note:
e The user cannot deselect, i.e. one of the options is always active.

e The selection possibilities can also be loaded as a set from a GDX file,
<options>%datdir%\%%task%.Input file (*.gdx)%.gdx,setname=r</options>

GGIG, Wolfgang Britz, Version March 2021 32

GGIG Graphical Interface Generator — Programming Guide

. Note that a dependency should be added to ensure that options are properly

updated if the user changes the file on the interface.

e Instead of using a GDX file defined via another control as shown above, the

file name can also be entered as fix.
e Longtexts attached to the set-elements can be also loaded from the GDX file,
use the style attribute “longtexts”, i.e. <style>longTexts:true</style>.
Multilist / MultiListNonZero
Purpose
Used for m of n selections, i.e. in cases where features are not mutually exclusive.

Multilist allows m = 0, i.e. also empty selection. MultiListNonZero requires m > 0, i.e. at least

one element must be selected.
Applicable fields:
Title, GamsName, Value, Options, range, Tasks, Style

Control optic:

DE &S
Countries [g§
Countries (W=I=IT ML ATPT IT
Notes:
e left hand side: range=0 right hand side: range = 3

e Drop down list will appear if the user clicks on arrow, and number of elements >

range and range<>0

e A negative range will generate a number of rows, and define endogenously the

number of columns such that all selection possibilities are visible, as seen below.

2004 20052006 2007
2008200920102011
Simulation years 2012 2013 2015
2025203020352040
20452050

Possible values:

GGIG, Wolfgang Britz, Version March 2021 33

GGIG Graphical Interface Generator — Programming Guide

Defined by options field
User action:
tick / untick box fields in the control with mouse

Example definition:

<control:

<order>1426</order>

<Type>multilist{/Type>

{Title*Longrun Option</Title>

<0ptions>FA0Z2658 “Fao projections®™
GLOBIOM_EU “Projections with GLOBID EU model®
GLOBIOM _GL “Projections with global GLOBIOM model®

{/0ptions>

<Ualue>FA02858 "Fao projections"</Ualue>

<range>3<{/range’

<gamsHame>longrunicen</gamsHame»

<tasks>Build global database</tasks>

<fcontrol>
Output to GAMS:
-SET Countries /
DE
FR
7

Selection groups

The multilist control features a pop-up menu which without selection groups only allows to

clear the selection or to select all items (see below).

Countries =

Clear Selection

Select All
EULS k Select
Regional breakdown EU12 | Add to selection
Mon EL ! Remowve from selection

The control definition files can define selection groups which allow for groups of items to be
selected, added or removed from the selection. Each selection group starts with a forward

slash “/” following by the name of the group. The items are and the next selection group are

GGIG, Wolfgang Britz, Version March 2021 34

GGIG Graphical Interface Generator — Programming Guide

then comma separated as shown below. Commas can be skipped if the next item is on a

different line.

<selGroups>

FEU1S
BLOBABAO "Belgium and Luxembourg",
DKBe8aaa “'Denmark™,
DEBOBAAA “Germany,
ELBB88888 “"Greece™
ESA806888 "Spain™
FRO8B6B6O “'France’
IRGOB86EA "Irland™
IToaeBea "Italy™
HLBBBaaa “"The Hetherlands™
ATAB8ABA8 "Austria™
PTOBB6868 "Portugal™
SEBBBB88 “"Sweden®
FI880888 “"Finland™
UK@8a8ea “United Kingdom™

FEU12
£Z2080808 "Czech Republic"
HUBBB8868 “Hungary"
PLBBBAEA "'Poland"
$18800888 "Slovenia"
SKB8888as 'Slovak Republic™
EEABABAA “Estonia™
LTA80808 “"Lithuania™
LUA8aana “Latvia™
cYaeaass ‘‘Cyprus"
HTaeB86a ‘“"Halta"
BGABAOAA “Bulgaria™
ROOBABBA 'Romania’

FHon EU
HOBBB888 “"Horway™
TUR “Turkey*

ALABABAA “‘Albania”

HKB8B8AA “Macedonia"

CS080888 “Serbia"

HO@eBeaa ‘‘Honteneqro"

HROOBABBA '‘Croatia”

BABOBBAE ‘‘Bosnia and Herzegouwina™
K0B88888 “‘Kosovo™

</selGroups>

Note:

e The selection possibilities can also be loaded as a set from a GDX file,

<options>%datdir%\%%task%.Input file (*.gdx)%.gdx,setname=r</options>
e The standard output from the control is a set definition in GAMS, other output

can be selected by:

<!-- The following style setting produces the _fst2 and _Tst2 gams elements -->
<style>output: [FsElst set globals</style>

GGIG, Wolfgang Britz, Version March 2021 35

GGIG Graphical Interface Generator — Programming Guide

Radiobuttons

Purpose

Used to select for several items a one of n-settings, outputted as two-dimensional set
Applicable fields:

Title, GamsName, Value, Options, Rows, Tasks, Style

Control optic:

® @ @

@
9
©)
©
©)
)
Q)
9
Q)

bhe © © @ @

Possible values:

Defined by range field

User action:

Select value by pressing up/down arrows or by editing the field with keyboard

Example definition:

GGIG, Wolfgang Britz, Version March 2021 36

GGIG Graphical Interface Generator — Programming Guide

{control>
<Type>FadioButtons</Type>
<Title>Elasticity settings</Title>

<options>Responding,Changing,Constant{/options>

<rows>
K1280Q0 "“Wheat"
K12200 *“Rye™
K123QQ “Barley"
k12400 "Dat"

K126Q00 "Grain maize™
k12700 “'Rice"

K12900 "Dry pulses”

K138qQQ “Potatoes"

K13100 "Sugar beet™
OtherTP "Other Crops™

SE286 “Livestock"

SE428 “Family Het Income"

["Costs"

1 “Land"

cap “Capital”

lab “Labour"
<frous>
{tasks>DEA<{/tasks>

<columns>Responding,Changing</columns>

<range>8,1,1<{/range>

<gansHame>elasticitySettings</gamsHame>

<value>K12000 ‘'"Wheat".Responding,K1220Q0
K124QQ0 "0Dat".Responding,K126Q0 "Grain maize" .Responding,K1270Q0Q
K1290QQ "Dry pulses" _Responding,K1300Q0Q
OtherTP "Other Crops”.Responding,SEZ06

“"Rye" .Responding,K12300 “Barley”.Responding,
"Rice" .Responding,
"Sugar beet" _Responding,
“Family Net Income".Responding,

"Labour".Constant,<{fvalue>

"Potatoes" . Responding,K1310Q
“Livestock” .Responding,SE428
"Capital".Constant,lab

c "Costs".Constant,1 "Land" .Constant,cap
<fcontrol>
Output to GAMS:

SET elasticitySettings(=,=) /
K1280Q0 .Responding
K12200Q0 .Constant
K12300 .Constant
K12400 .Constant
K1260Q0 .Constant
K1270Q .Constant
K1290Q _.Constant
K1380Q .Constant
K1310Q .Constant
OtherTP .Constant
SEZ286 -Constant
SEX?A -Constant
C -Changing
1 .Constant
cap .Constant
lab -Changing

/s

GGIG, Wolfgang Britz, Version March 2021

37

GGIG Graphical Interface Generator — Programming Guide

Slider
Purpose

Used to select one integer value from a given range of allowed ones. The increments

must also be defined.
Applicable fields:
Title, GamsName, Value, Options, range, Tasks, Style

Control optic:

)

1 227 34T iS55GS 2 8 eg 0

Time resolution for investment/off farm labour decisions

Note: Selectable values will be restricted according to the increment definition.
Possible values:

Defined by range field

User action:

Select value by pressing up/down arrows or by editing the field with keyboard

Example definition:

{control>
{Type>slider</Type’
{Title>Time resolution for investmentfoff farm labour decisions</TitleZ
<Ualue>3.B@</Value>
<range>1,18,1{/range>
{gamsHame>timeResolutionInu{/gamsHame>
{tasksrall<{itasks>
<fcontrol>

Output to GAMS:

$SETGLOBAL Set_substitution_elasticty 5

GGIG, Wolfgang Britz, Version March 2021 38

GGIG Graphical Interface Generator — Programming Guide

Spinner

Purpose

Used to select an value from a range of allowed ones. The increment can be chosen

by the user.

If the range of the slider is large, it might be hard for the user to pick a specific value. In that

case, a spinner is easier to control.
Applicable fields:
Title, GamsName, Value, Options, range, Tasks, Style

Control optic:

LUse lower price iterations weights after iteration = 20.0 -5

Possible value:

Defined by range field (first, last, increment)
User action:

Select value by moving slider

Example definition:

<control’
<order>1811<{/order>
{Type>spinner</Type>
{Title>min end year of planning horizon<{/Title>
<Value>2828{/Value’
{range>2815,2188,1,15<{/range>
{gamsHame>lastYeardin</gamsHame>
{tasks>Experiments<{ftasks>

{fcontrolX

Output to GAMS:

$SETGLOBAL Relative weight flows 20

GGIG, Wolfgang Britz, Version March 2021

39

GGIG Graphical Interface Generator — Programming Guide

Table / TableSimple

Purpose

Define a table with floating point values passed to GAMS.

Applicable fields:

Title, GamsName, Value, Columns, Rows, Dim3s, Range, Tasks, Style
Control optic:

Inputs

Y .
P Price Growth rate "%"
-

-

Wage rate full time 15.00 -
"(Euro/ hour)"” =
Wage rate half time 12.00

"(Euro/ hour)"

Wage rate flexible 10.00

hourly "{Euro/hour)"

Maize silage 30.00

"(Euro/t)"

Gras silage "(Euro/t)" 24.00 |

User action:

e Edit single fields with numerical values. Cut/Paste via clipboard possible

Example definition:

{1—- wages .catt conc , o0ild, pigs conc ,Diesel,ASS, AHL ,seed, KRS, PHK, HKaliMag,Lime Herb,Fung,Insect,gouth,vater @@ ——>

<control>
<Type>tableSimple</Type>
<Title>Inputs</Title>
{columns>Price,Growth rate "%"<{/columns>

<value>
1.8, 8.8,7.08,6.0, 32,28,0.801,200,2268,2408, 1150, 550,300,608, 6.70, 0.31,0.34, 1.08, 6.31, 0.29, 0.34,59.08, 1.00,1.68,1.00
1.8, 1.0,1.8,1.8, 1.8, 1.6,1.8,1.08, 1.0,1.8, 1.0, 1.8,1.8,1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.8, 1.0, 1.0,1.0,
<fvalue>
<rous>

Wage rate full time ""(Euro/hour)”

Wage rate half time “({Euro/hour)"

Wage rate flexible hourly "(Euro/hour)”

Haize silage “(Euro/t)"

Gras silage "(Euro/t)"

Manure “(Euro/t)"

Ccattle concentrate type 1 "(Euro/t)"

cattle concentrate type 2 “(Euro/t)"

Cattle concentrate type 3 “(Euro/t)"

0ils for feed

Pigs concentrate type 1 “{Euro/t)"

Pigs concentrate type 2 "“{Euro/t)"

Pigs concentrate type 3 "{Euro/t)"

Diesel

ASS

AHL

seed

Kns

PK_18_10

KaliMag

Lime

Herb

Fung

Insect

grouthContr

water

haillns
</rous>
<range>0.008060061,1500.,08,-5,+5, .1</range>
<gamsName>p_inputPrices</gamsName>
<tasks>Single farm run, Calculate HACs,Experiments dairy,Experiments arable<{/tasks>

</control>

, 9.

3n,

3

GGIG, Wolfgang Britz, Version March 2021

40

GGIG Graphical Interface Generator — Programming Guide

Notes:

e The value field gives first the default value for a column, next a set of default values
for the rows for that column. Afterwards, additional columns follow the same scheme.
It is therefore recommended to put all values for one column in a row to increase

readability.

e The range field might comprise several tuples of “low-up-increment” which will then
be assigned to the columns of the tables. If there is only one tuple, it will be used for

all columns.

e If arange is given, a spinner will be used as the cell editor and values outside the range

will be rejected.

e The content of the table can also be loaded from a GDX file, in which case the name

of an GDX file must be entered under <options></options>, e.g.:

<options>grasAttr.gdx</options>

e The rows, columns and dim3s of a table can also be loaded fom a GDX file, an
example is shown
below:
<rows>%resdir%/build/%%task%. Input file (*.gdx)%.gdx,setname=rNat</rows>
e That case can be combined with dependencies by defining the GDX file from another

field, see the example for single list.

GGIG, Wolfgang Britz, Version March 2021 41

GGIG Graphical Interface Generator — Programming Guide

Output to GAMS:

* Inputs
TABLE p_inputPrices{s, =)

*

‘Wage rate full time *
‘Wage rate half time °*
'Wage rate flexible hourly
‘Maize silage
'Gras silage
*Manure
‘Cattle concentrate type 1
‘Cattle concentrate type 2
‘Cattle concentrate type 3
‘0ils for feed’

'Pigs concentrate type 1
'Pigs concentrate type 2
*Pigs concentrate type 3
‘Diesel”’

"ASS”

"AHL*

‘seed"’

"KAS*

*PK_18_18"

'KaliMag*®

‘Lime*

‘Herb*

"Fung"’

‘Insect”’

‘growthContr”

‘water’

‘Railins

'Price’
15.688
12.88
18.88
30.08
2h .88

220.80
248808
260.00
1508.08
LLa. 88
300.00
6Ga0.080
B.78
8.31
8.34
1.88
8.31
8.29
8.34
50.88
1.468
1.88
1.688
1.468
2.58
9.34

‘Growth rate

GGIG, Wolfgang Britz, Version March 2021

42

GGIG Graphical Interface Generator — Programming Guide

Layout of the controls on the interface and style options for

controls
Overall, the layout of the GUI is structured by the following main elements:
1. Tabs provide the uppermost layer, by showing different “pages” with controls.

2. Separators allow putting a heading over a group of controls. Controls under a

separator share a common space and will be kept together as one block.

3. Panels allow defining a group of controls which are not separated if the interface is
resized, i.e. a block of controls. A separator can span over several panels.

Generally, controls are put along the y-axis (top to bottom) into blocks. In order to provide an
x-ordering (left to right), panels or separators can be used to define block of controls. If no

panel and/or separator is given for a tab, all controls will be shown in one block.

Controls in a block stick together; the maximal height of a block on any page defines the
minimum height of all pages. If the width of a page becomes too small, the rightmost block(s)
of that page will move below of each all others, and the minimal height of all pages will
increase. Furthermore, as discussed next, controls can share one line. Accordingly, it is

recommended to build relatively small block of controls.

Note: if several panels are present under a separator, they are always laid out on along the x-

axis. Reducing the width of the page will not reorder blocks below a separator in several lines.
Most of the controls allow for a style tag. Currently, only the following options are supported:
1. Putting the controls in the same line below the last one

{control>

{Type>checkbox</Type>

{Title>Allow for off Farm work<{/Title>

<Ualue>true{/Value>

{style>sameLine:trued/style’

<gamsHame>allowForOFfFarm<{/gamsHame>

{tasks>Single farm run, Calculate HMACs, Experiments dairy,Experiments arable</tasks>
{fcontrol>

Which leads to the following:
Different states of nature for price || Allow for off farm work [V

The sameL.ine style tag can be combined with hidden or shortened control titles as discussed

below.

2. Left alignment

GGIG, Wolfgang Britz, Version March 2021 43

GGIG Graphical Interface Generator — Programming Guide

<control>
{Type>singlelist<{/Type>
{Title>Base year<{/Title>
<Value>20884</Value>
<0ptions>28084,208086,2088</0ptions>
<gamsHame>BaseYear<{/gamnsHame>
{style>vAlignment :left<{/style’
<tasks>»Define fts From FSS,
<ftasks?

</control>

1. Left alignment of label and right alignment of control
An example with two check boxes is given below:

<control>
<Type>checkBox</Type>
<Title>Allow pur¥chases of silage maize</Title>
<WValuerfalse</Value>
<gamsName>purchMaizSil</gamsName>
<tasks>Single farm run, Calculate MACs,Experiments dairy</tasks>
<style>vAligmment:Spread</style>
<dependsOn>Farm branches:Dairy</dependsOn>
</control>

<control>
<Type>checkBox</Type>
<Title>Allow selling of silage maize</Title>
<Valuerfalse</Value>
<gamsName>sellMaizSil</gamsName>
<tasks>Single farm run, Calculate MACs,Experiments dairy, Experiments arable</tasks>
<style>vAligmment:Spread</style>
<dependsOn>Farm branches:Dairy</dependsOn>
</control>

Allows purchases of silage maize

Allow selling of silage maize

2. Width and height for tables and selection lists, e.g.

<control>
{Type>TableSimple</Type>
£Title>»Soil</Title>
{columns>Share</columns>
<rows>1 "Light",m "Hiddle",h “Heawy"<{/rous>
<gamsName>p_soilShare</gamsName>
<value>»6.33,0.33,0.33,0.33</value>
<range>8.8,1.8,0.01<{/range>
{gamsHame>p_soilShare</gamsHame>
{tasks>Single farm run, Calculate MACs,Experiments dairy,Experiments arable</tasks>
{style>width:220<{/style>

{fcontrol>

3. Positoning of the title on top of the control: titlepos:onTop

GGIG, Wolfgang Britz, Version March 2021 44

GGIG Graphical Interface Generator — Programming Guide

<control>
<Type>MultilistNotZero</Type>
<Title>Farm branches</Title>
<range>5</range>
<value>Dairy,Arable</Value>
<options>Dairy, Sows,Fattners,Arable,Biogas</options>
<gamsName>farmBranch</gamsName>
<style>titlePos:onTop</style>
<tasks>all</tasks>
</control>

Farm branches

SOWs
Fattners
Arable
Biogas

4. Using line breaks in the title, removing the title or shortening the title:

It is sometime useful to use another title to be shown by the user as used internally to store
settings. An example is the case where two neighbouring controls define a min and max value

as in the following screen shot:

Construction year of stables

: : 1.995% max 1.985/%
and machinery, min

The XML-code is shown below. Note the “sameLine:true” for the second spinner which
positions the two logically connected controls (min and max) in the same line. The second
title is shortened to “max” based on the dedicated “title”-style. That allows to use “max” as a
title for several of such cases whereas the full description is still used to store the settings

internally (e.g. in a batch file).

<control>

<Type>spinner</Type>

<Title>Construction year of stables\n and machinery, min</Title>

<value>1995</value>

<range>1980,2010,1</range>

<options>int</options>

<gamsName>stableYearMmin</gamsName>
/ 1<tasks>Experiments dairy,Experiments arable,Experiments fattners,Experiments sows</tasks>
</control>

<control>

<Type>spinner</Type>

<Title>Construction year of stables\n and machinery, max</Title>

<value>1995</value>

<range>1980,2010,1</range>

<options>int</options>

<gamsName>stabhleYearMax</gamsName>

<style>sameLine:true,title:max,valignment:left</style>
y 1<tasks>Experiments dairy,Experiments arable,Experiments fattners,Experiments sows</tasks>
</control>

If different style options are present, they should be separated by comma.

GGIG, Wolfgang Britz, Version March 2021 45

GGIG Graphical Interface Generator — Programming Guide

As a consequence of the layout concept discussed above, the following recommendations can

be given:

1. Firstly, in order to allow for resizing of the overall the GUI, not too many controls

should be placed on one tab.

2. Secondly, individual blocks of controls should be kept small to avoid that the page
height becomes too large, they <can be grouped using separators
(<type>Separator</type>) and panels (<type>Panel</Type>.

3. Small controls, especially when logically related, can be placed on the same line with

<style>sameline:true</style>.

4. Try to use short titles, if that cannot be avoided, consider introduced line breaks “\n”
in the title description. Moving helpful comments into a <tooltip> can help to use
shorter titles. Consider moving the title above the control using

<style>titlePos:onTop</style>.

5. Thirdly, controls should be linked to tasks and user levels and dependencies between
controls should be used where possible to hide not active controls.

Readability of controls can also be improved by using appropriate vertical alignment. The
default case places the title left from the control and centres them jointly on the current panel.
The alternative options (left alignment of title or left alignment of title and right alignment of
control) where discussed above.

1. Treatment of long texts:

Lists can comprise long texts. This can either be outputted to the interface (“longTexts=true”)

or, as the default, are converted to tooltips as in the example below

Purchase

EM2009
EEG versions

E2012
EEG 2009- Manure
EDMZB‘rz" —a —J

EDM2014

v

Help system

The help system consists of different elements:

GGIG, Wolfgang Britz, Version March 2021 46

GGIG Graphical Interface Generator — Programming Guide

1. Help related menu items (links to web pages, PDF documents) can be added to the

menu bar.
2. Tooltips can be registered with controls

3. PDF Links, opened with the F1 help key, can be registered with tasks, worksteps and

controls.

4. Similarly, PDF links and tooltips can be registered with views, see section on the

exploitation part.

5. The exploitations part has fixed registered PDF links to the GUI user guide linked to

various controls and dialogue.

Help menu items

GGIG allows adding three types of menu items to the menu bar: (1) HTML links, (2) e-mail
sent items and (3) PDF links:

<helpmenuitem>
{name>View capri web page<{/name>
{value>http:/fwww._capri-model.org<fuvalues
</helpmenuitem>

<helpmenuitem>
<name>Send mail to capri user list</name
{value>capritalks@ilr .uni-bonn.de<fuvalue’
{typermail<{/type>

{/helpmenuitem>

<helpmenuitem?
<name>GTAP in GAMS user guide<{/name
<value>. M\doc\ETAPinGAMS with a GUI.pdf</value>
<type>pdf<{/typed>

<fhelpmenuitem>

Tooltips
GGIG shows as the default tooltip the default value of the control and its GAMS name:

Price dependent harvestrate |/

Defauli="true"
gamsName="updateHarvestRate’

Further tooltip lines can be append with the <tooltip> field. HTML tags can be used to format
these additional lines, e.g.
 to begin a new line, to put text in bold or <I> to show
text in italics. If HTML tags are used, the tooltip texts must be enclosed in with a
<I[CDATA]..]J]> tag as shown below.

GGIG, Wolfgang Britz, Version March 2021 47

GGIG Graphical Interface Generator — Programming Guide

<tooltip><{t[CDATA[The new market layer defines an additional geographical layer of country aggregates<{BR>

with homogenous border protection and market intervention measures (e.g. EU, HMERCOSUR countries).

If switched on, all trade policies (tariffs under trq, entry price system, intervention, flexible levies)<{BR>
are defined at the new geographical level.

Be aware that before running a scenario, you need to re-calibrate the model with this option switched on.<{BR>
For more information contact Mihaly Himics.]]>

<{/tooltip>

Links to PDF documents with bookmarks

The <pdfLink> field, available for tasks, worksteps and controls, can be used to let the user
open a bookmark in a pdf documentation when the help key F1 is pressed. The tooltip will
inform the user if a PDF link is registered:

Price dependent harvest rate

Default="true"
gamsName="updateHarvestRate'
Press F1 to open PDF (bookmark)='ModelDocumentation.pdf#Supply: stocks and flows'

If MS-Word docs are saved as PDF, so-called textmarkers can be generated (under options,
unprintables are similar) from headings, the Adobe PDF generators offers the same
functionality. The PDF files are defined relative to the GUI directory, i.e. in the example

above, the files must be found in the GUI directory.

If the user presses the F1 key, the PDF documentation is shown in a separate window. The
user can close the window; it opens with the next use of F1. The user can flip through the
pages with page up/down buttons. The PDF decoder used internally is the non-commerical

version which shows graphics not in full resolution.

GGIG, Wolfgang Britz, Version March 2021 48

GGIG Graphical Interface Generator — Programming Guide

g

|2/ PDF [ModelDocumentation.pdf]

e S|

=@]

The total demand for each demander encompasses the demand for the individual products (in
function:

aerin

" &_semamt{cerRegions (regians) denander _pretucts, curtear)
s

w demand{reyLows demssder products cur¥rar)
emome 5 aLetrey Lo, g presucts curyear)
i
[
u_denanaTot (reglans denanidor cur Ve

= p_sharcParCETBeRand(r ogisas densedor praducts, cuVear)

* (v denamgerFrice (reqisns denssder curfear)
FUw_prosPrice(regive progects corfear]

* curbar)
)
5 == p_rhecTotbonand (reglans, denanier)

140 Semand_scaleqreqions, demander progects, curtear);

The average demand price for each demander is the nonelinear weighted average of the products,
using a dual price aggregator derived from the FOC of a CES demand system:

= wes dedime surrsgo demander price

©_SeRangeryice [cUrRegiang (regions) Senanser yoars) § { carvess(years)
% w_demandlat zalo(reginns, denandsr ,ynars))

u_denanderPeico (reglun deninger ,yosrs)

wum(eedinrs § o
p_shar et ar il Shea

i
shar T s pruluet

+ u_duremerr L ey L privecs yeers)
§ w shar e Ul SBealesOrey ow prodects

R T ——
} s 1 #LI-R rhecIotBenand(regions Semanser))}
Mote: (1) The CES aggregation which is represents demand system is not equal to a physical one,
but rather depicts the utility level achieved by consumers. {2) The product prices driving consumer
decisions is either the uniform market prices p_prodPrice if the SPE version is used or the product
demand price p_demandPrice if the Armington approach s switched on, See below for details.

Supply: stocks and flows
The model distinguishes three forest owner groups, as well and an agaregate over all owners for
regions nat covered by the UNECE forest and timber statistics:

SEENRORRuneis Torestry cwiers™/
privinall “Up te 100 ha"
privith ALl sther priv

Ll
I

Detailed model documentation

1 differing shares); the related demand shares are driven by a CES (Constant Elasticity of Substitution)

w demsnd.srale{reqiens, dramder products,curvear) ..

-

m,

Owners are assumed to differ in their em depicted by a different reaction to orice

Iftheuser-presses-tl

Starting GAMS from GGIG

ms]
- o —

ties GUI Settings

lid raw data base
Erence run
scenario

periments

General settings | Scenario seitings demand | Scenario

General settings

Scenario name | conifer_sup_mS

Pric

Compile GAMS ||

GAMS output

GGIG allows starting the GAMS project directly from the interface, either in compile or run
mode. A break request can also be sent to GAMS (“stop GAMS”):

| | Compile Gams || Stertcams || StopGams |

Once started, the GAMS project routes its output to the console back to lower right part of the

interface:

GGIG, Wolfgang Britz, Version March 2021

49

GGIG Graphical Interface Generator — Programming Guide

--- .farm_constructor.gms (91} 3 Mb -~
--- exp_starter.gms (74) 3 Mb

--- .ini_herds.gms (19) 3 Mb

--—- ..title.gms{30) 3 Mb

--- .ini_herds.gmz (86) 3 Mb

--- exp_starter.gms (78) 3 Mb

--- .decl.gms(29) 3 Mb

--- exp_starter.gms (135) 3 Mb

-—— .title.gm=(30) 3 Mb

--- exp_starter.gms (202) 3 Mb

--- .title.gm=(30) 3 Mb

--—- exp_starter.gms (240) 3 Mb

--- .store_res.gms (232) 3 Mb

--- exp_starter.gms (323) 3 Mb

-—— .title.gm=(30) 3 Mb

--- exp_starter.gms (325) 3 Mb [}S
--- .gtore_res.gnz (Z32) 3 Mb

--—- exp_starter.gms (344) 3 Mb

*** Status: Normal completion

--- Job exp_starter.gms Stop 12/01/10 21:06:06 elapsed 0:00:00.047
GAME RC O

< >

The pane with the content can be scrolled by a right mouse click in the pane to open a popup
menu. If an editor is added under “opther options”, the GAMS and the listing file can be
opened as well:

Open games file .
{Zpen gams Ist file ..

The pane can hence be “frozen” so that e.g. the status of a model solve can be inspected while
the project continues to run. In order to successfully start a project, the ini file for GGIG must
comprise the information where the GAMS executable can be found, but also where the

GAMS code of the project to start is stored.

GGIG, Wolfgang Britz, Version March 2021 50

GGIG Graphical Interface Generator — Programming Guide

General interface settings

The interface has a few standard settings which can also be accessed via the “edit settings

dialogue”. These are:

e Certain file locations: the directory where GDX files for results are assumed to be

stored (resDir), and three directories which can be used to adjust the specific model
application: the root of the GAMS file (workDir in GAMS), called modelDir, a

directory for restart files and one for data files.

Cption

User Settings | GamS | S| Other options

TRIMAG model files directory t:ihbritz\trimag D
Result Directory t:vbritz\trimag E]
Restart Directory t:ibritz\trimag E]
Data Files Directory tribritzi\trimag E]

The default case shown above is set to “Model,Res,Restart,Dat”, but the XML file can define

only a subset of those or add additional ones, for instance

{defaultbirs><{attr>model ,res,dat,Policy editor<{/attr></defaultbirs>

Note: The name of the system (here TRIMAG) is defined in the ,,GGIG.INI* file

Default settings can be defined in the XML file:

{datDir><attr>. . ndat<{/attr><{/datbir>
<{modelDir><attr>..\gams<{/attr></modelDir>
{resDir><attr>. . \results<{/attr><{/resDir>
{restartDir><attr>. \restart<{/attr><{/restartDir>

GGIG, Wolfgang Britz, Version March 2021 51

GGIG Graphical Interface Generator — Programming Guide

GAMS and R related settings

Option
User Settings | System Settings | GAMS and RS sy | Other upnuns‘

Path to GAMS.exe L:\gams.exe

I GAMS scratch Directory d:\scrdir

1NN

T:\britz\dairydyn\R-2.15.1\bin\x64\Racript.exe

Path to R.exe

GAMS Options threads=8 -maxprocdir=255 -license=L: \ga_mslice_cplax. TET

Number of processors used in GAMS Get the number of processors ... 32 :
Processor speed relative (100% ~ 2.4 GH Intel core 2 100 :

Save in dairydyn.ini

The default case is set to "GAMSexe,Rexe, Trollexe", but the XML file can define only a
subset of those or add additional ones, for instance:

<defaultExes><attr>GAMSExe ,HartoDGXExe<fattr>»<{sdefaultExes>

These settings can also be defined in the XML file:

<gamsexe><{attr>D:\gams23.7\gams.exel/attr><{/gamsexe>
<rexer{attr>Dwribind6liivr exel/attr></rexe>
<gamsoptions><{attr>threads B</fattr><{/gamsoptions>
<numberofprocessors><attr>8{/attr><{/numberofprocessors>
{processoripeedRelative><attr>188{/attr></processorSpeedRelativel
<scratchbir><{attr>188{/attr></scratchDir>

SVN related settings

Option
Cnption

| user Settings | TRIMAG System Settings | Gams (S

SWH Lger id ‘

SYM password

SYM URL for results

SWH URL for Gams ‘ ‘
SYM URL for restart ‘ ‘

SYM URL for data

Q Save in gig.ini

The SVN settings can be used to perform checkout and updates in cases where the model
code with related data, restart files or result files is under versioning control on a SVN server.
If the model is not under version control, the settings “svn=no” renders the tabbed plan

invisible.

GGIG, Wolfgang Britz, Version March 2021 52

GGIG Graphical Interface Generator — Programming Guide

Default settings can be defined in the XML file:

<SunURLforDat><{attr>{/attr><{/SunlURLforDat>
<SunURLforGUI><attr>https://svn1.agp.uni-bonn.de/svn/capri/trunk/GUI</attr></SunURLforGUI>
<SunURLforGams><attr>https://suni_agp.uni-bonn.de/sun/capri/trunk/gams<{/attr><{/SunlRLforGams>
<SunURLforRestart><{attr><{/attr><{/SunURLforRestart>
<SunURLforResult><attr>https://suni.agp.uni-bonn.de/svn/capri/trunk/results/regoge{/attr></SvnURLforResult>

Including credentials:

<SUNPud><attr>1+\" _]</attr>{/SUNPud>
{SUNHUserID><attr>ierdlag_</attr><{/SUHUserID>

The credentials are obfuscated. In order to edit them, use the dialogue and copy the settings

from the generated ini file to the XML.
It is also possible to switch the SVN panel completely off with:

<sun><attr>nodsattr></sun>

Settings linked to the exploitation tools

Option
User Settings | System Settings | GAMS and R [sy || ther options |

I Path to view definition file (tables. xmi) T:\britz\capri\GUl\tables.zml E [7] sort code lists in predefined tables
Path to Editor \hagphpubisoftikedit\KEDITWIZ . EXE E [] Sort code lists if showing all elements
Language to load from tables.xml English Clean window with GAMS output with each new GAMS compilefstart

Use task spedific settings in interface

[] Debug XML table definition (output to OS prompt

Options

Save in dairydyn.ini

The standard table file can be defined in the XML:

<xmlTables><{attr>tables.xml</attr></xmlTables>

GGIG, Wolfgang Britz, Version March 2021 53

GGIG Graphical Interface Generator — Programming Guide

Meta data handling

Why meta data?

Meta data are data about data. In many GAMS projects, it is impossible or cumbersome to tell
exactly based on which shocks and settings results of a model run had been generated. That is
due to the fact that run specific settings are not stored at all or not stored together with the
results of the run. Later on, result users are often left guessing what exactly the settings

underlying the run might have been.

In order to overcome that problem, the GGIG, drawing on CAPRI GUI concepts, forwards all

interface settings - plus the user name and the current time - to GAMS in one SET called
META.

A correctly defined interface with GGIG should allow to steer all run specific settings. If that
is the case, the meta data generated by GGIG will provide an exact and sufficient definition of
all run specific inputs, ensuring that all relevant meta data about a run are stored along with
quantitative results in the same GDX file. Accordingly, GDX files shipped to other desks or
committed e.g. to a SVN server still carry all necessary information to identify exactly the

run.

Technical concept

The meta handling is straight forward. The state of the different control is mapped into pairs
of set elements and related long text descriptions as shown below from an example

application:

SET META /

"Scenario description’ 'my test scenario’
"Choose model type’ 'CGE’

"Relative weight flows' "30°

"Use demand elasticities’ ‘true’

"Set substitution elasticty’ '6.0°
"Countries’ 'HNL,°

A

and, might with one GAMS statement as shown below, stored in the GDX files along with the

results:

GGIG, Wolfgang Britz, Version March 2021 54

http://www.capri-model.org/docs/meta.pdf

GGIG Graphical Interface Generator — Programming Guide

execute_unload "Yscenario_descriptioni.gdx™ META,RESULT;

The user might then select some scenario:

B TRIMAG [t:\britz\rimag]

File Settings be
TRIMAG taks Scenario exploitation
Start TRIMAG A N

O ar Scenario 1 ‘mv first scenario Vl

(@) Exploit scenarios
Scenario 3 ‘ Vl
Scenario 4 ‘ Vl
Scenario 5 ‘ Vl

| [Show meta H Show results]
|TRIMAG Graphical User Inter-... | Ini file : gig.ini ‘User name : undefined |User type : runner ‘

And then, by pressing “show meta”, view the settings used for these scenarios:

GGIG, Wolfgang Britz, Version March 2021 55

GGIG Graphical Interface Generator — Programming Guide

B TRIMAG [t:\britz\Mrimag]

Wiew Handing Windows

B TRIMAG - result exploitation, meta data [0]

SCenario

cenario

IRIMAG Graphical User Inter-... | Ini file : gig.ini User name : undefined User type : runner

Exploitation

The basic strategy of the GGIG exploitation tools roots in the CAPRI exploitation tools,

which require that all model results are stored on an up to 10 dimensional cube, which is then
stored in a GDX container as a sparse matrix. Additional dimensions can be added if several
files are loaded, e.g. to compare scenarios and/or years. A specific XML dialect defines views
(filters, pivots, view types) into the cube, and allows the user to load several result sets —
typically from different scenarios — in parallel.

If no table definition file is present, GIGG offers a GDX viewer which some interesting
possibilities not found in the standard GDX viewer (such as numerical sorting, statistics,

selections). For details, the GGIG user manual should be consulted.

Excurse: history of GGIG, CAPRI GUIs

Reading the following chapter is not necessary to work with the GUI, but rather intended for a
reader who is technically interested. The original software implementation of CAPRI was
based on software available at ILR at that time and comprised a DBMS realized in
FORTRAN with C/C++ code for the GUI. Whereas the economic model was from the

GGIG, Wolfgang Britz, Version March 2021 56

http://www.capri-model.org/gui.htm

GGIG Graphical Interface Generator — Programming Guide

beginning implemented in GAMS, data transformations which generated the regional data
base for CAPRI were still coded in FORTRAN, as it was done for the SPEL-EU data base
serving as input for the regional data base of CAPRI. These FORTRAN routines were
replaced by GAMS code in the CAP-STRAT project 2001-2004 along with new Bayesian

based methodologies to ensure consistency and completeness.

The very first maps in CAPRI (in 1998) were produced with an MS-EXCEL mapping plug-in
which was at that time a cost-free add-on. However, moving the data to EXCEL and then
loading them in the viewer was not a real option for the daily debugging work on the data
base and the model. Therefore, shortly before the first CAPRI project ended in 1999, a JAVA
applet was programmed by W. Britz which was able to draw simple maps from CSV-Files.
These CSV-file were automatically produced by the CAPMOD GAMS code. That code with
slight modification remained active for quite a while, and some of the features are still found
in the current mapping viewer. Then for a while, the CAPRI exploitation tools were based on
XML/XSLT+SVG and a mapping viewer in SVG was realized. However, the XML solution
had the big disadvantage of requiring a large amount of single ASCII input files, and was not
really performant when complex pivoting was used. That XML-based solution was also used
with other modeling systems, e.g. the @2030 system developed for the Global Perspective’s
Unit of the FAO.

To avoid that many ASCII files were generated, the next evolution step was a pure Java GUI.
released around 2006, with direct access to GDX files which is the still the basis of the current
Java code underlying GGIG. GDX files are an internal file format used by GAMS which
allows a rather efficient 1/O for large sparse tables. An API library delivered as part of GAMS
installation allows to access GDX files from other applications. That design has the obvious
advantage to be firstly based on the portable JAVA language. Secondly, as no external DBMS
is used, it is possible to use CAPRI or other modeling systems applying GGIG by solely
executing GAMS programs. Such a model might hence run on any system supported by
GAMS, without the need to install additional software.

The next version of the CAPRI GUI consisted of three rather independent components.
Firstly, a GUI to control the different work steps of CAPRI programmed in Java. That code
dealt mostly with defining GUI controls (button, scroll-down lists etc.) to manipulate
properties of CAPRI tasks, and then to start them as GAMS processes. That part has been
thoroughly refactored with the revision of 2008. That refactoring introduced tasks as formal

objects in the Java code of CAPRI, however in a far less generic way as it is done in GGIG. A

GGIG, Wolfgang Britz, Version March 2021 57

GGIG Graphical Interface Generator — Programming Guide

second important part is the CAPRI exploitation tool, which are basically generic enough to
be used for other modeling systems as well. The 2008 refactoring left most of the code
untouched compared to the code developed since 2006, with the exemption of the graphics
which is now based on the JFreeChart library. However, as discussed below, in 2007, the
mapping viewer was refactored in larger part to host the 1x1 km grid solution developed in
the CAPRI-Dynaspat project. The exploitation tool is a rather unique solution to exploit result
sets from economic models based on the definitions of views which are defined in XML
tables. It combines features from DBMS reporting, data mining, spreadsheet functionalities
and GIS into one package. And thirdly, there are some specialized pieces as the HTML based

GAMS documentation generator which are linked into the GUI.

In 2010, a possible project by a Swiss team to add an interface to a GAMS project triggered
the development of GGIG. A further motivation was the fact that any new GUI control
needed on the CAPRI interface required changes in the Java code. That was not only tiring, it
also let the Java code grow and made it harder to maintain. There were also increasingly
features added to the CAPRI GAMS code which could not steered by the CAPRI GUI, but
were switched on/off or otherwise modified by changes in the GAMS code. It was clear that
this development was not sustainable. GGIG was first tested with very simple GAMS
program, before the decision was taken to move the CAPRI GUI over to GGIG. That was
probably a lucky development for GGIG, as CAPRI was at that time already a highly complex
project with many tasks and settings, such that the further development of GGIG reflected the

needs of complex model systems.

Execution of tasks via a GamsStarter and GamsThread

Execution of tasks in GGIG is handled by a GamsStarter object. An instance of GamsStarter
lets the task write out the necessary include file(s) in GAMS format to generate a specific
instance of the specific task (a simulation run for a specific scenario, simulation year, with the
market model switched on or off ...). A GamsStarter also knows about the working directory
or other specific GAMS settings as the scratch directory. It may generate a pipe for the
GAMS output to the console to show it in a GUI.

An Task can be executed by a GamsStarter who will then create a GamsThread. A
GamsThread extends the SwingWorker interface of Java so that it may communicate with the
normal event queue of JVM. A GamsThread can be gracefully terminated by sending a
SIGNT signal to the GAMS process. That will let the GAMS execution stop at a specific

GGIG, Wolfgang Britz, Version March 2021 58

GGIG Graphical Interface Generator — Programming Guide

point determined by the GAMS engine itself and start the finalisation handling of GAMS as
well as the removal of intermediate files and directories.

Refactoring the mapping part

When the 1x1 km grid layer was added to CAPRI during the CAPRI-Dynaspat project, it

became obvious that the existing JAVA code used to produce maps in the CAPRI GUI needed
some revision, especially regarding the way the geometry was stored. In this context, the
question of using an existing GIS independently from CAPRI or the use of existing GIS
classes plugged-into the CAPRI GUI was raised again and some tests with open-source
products were undertaken. A stand-alone GIS as the sole option was certainly the less
appealing solution. Firstly, it would have required exporting data from the GDX containers
with CAPRI results to the GIS software, producing rather large intermediate files. It would
also have left the user with the time-consuming and often error prone task of exporting and
importing the data. Secondly, the user would need to switch between two different programs
and GUI standards. And thirdly, all the usual problems with installing and maintaining
additional software on a work station would occur. However, as indicated later, the GUI
naturally allows passing data over to external applications and does hence not prevent the user

from using a full-fledged GIS solution.

The main points taken into account during the search of a map viewing solution for CAPRI
were: (1) possibility to import data from the CAPRI GUI efficiently, (2) user-friendliness,
(3) performance and (4), in the case of plug-in libraries, expected realization and maintenance
resource need, and naturally (5) license costs. It turned quickly that an ideal product was not
available. Some of GIS products were not able to allow for the necessary link between newly
imported tables with region codes and an existing geo-referenced geometry. Others had very
complex user interfaces or produced run-time errors, took ages to draw the HSMU maps or
were quite expensive. From the different options tested, the gvSIG
(http://www.gvsig.com/index.php?idioma=en) freeware GIS seemed to be the only option,
allowing the user to import data from a CSV — which must however be semi-colon delimited
— and join one of the columns to a shapefile. At least the version installed at that time was

however running not very stable.

In the end, it was decided to build on the existing code base and let Wolfgang Britz write the
additional code “on demand”. The main advantage of that approach is the fact that the

mapping view is transparently integrated in the CAPRI GUI, it is sufficient to switch from

GGIG, Wolfgang Britz, Version March 2021 59

http://www.ilr.uni-bonn.de/agpo/rsrch/dynaspat/dynaspat_e.htm

GGIG Graphical Interface Generator — Programming Guide

“Table” to “Map” in a drop-down list to produce a colored map, and that user demands
regarding additional functionality may be and had been added, taking into account the specific
needs of the CAPRI network.

Compared to ArcGIS, where the EU27 HSMU geometry plus codes and centroids requires
about 340 Mbytes, the GGIG based version requires about 27Mbytes solely. Reading the
GGIG coordinate information is somewhat slower compared to ArcGIS due to unzip on
demand. The actual drawing operation takes about the same time as in ArcGIS (about 11

second for the full data set). Classification in GGIG is typically faster.

Views as the basic concept

The concept of the GGIG and former CAPRI exploitation tools is centred on the idea of a
view. Content wise, each view may be understood as showing one or several indicators
relating to results of GGIG tasks, e.g. in CAPRI, environmental effects of farming, prices or
market balances. Technically, it could be understood as a combination of a selection query
(i.e. filters in the different dimension of the data cube loaded by the exploitation tools) and
presentation details (e.g. pivot, visualization as a map, table or graphic, fonts and colors),

similar to a report definition in a DBMS.
Each view thus:
e extracts a certain collection of numerical values
e labels them so that they carry information to the user (long texts, units)
e chooses a matching presentation — as a table, map or graphic
e and arranges them in a suitable way on screen.

The views can be linked to each other, allowing a WEB like navigation through the data cube.
Views can be grouped to themes. The user may open several views in parallel, and he may
change the views interactively according to his needs, e.g. switch from a map to a tabular

presentation, or change the pivot of the table, sort the rows etc.

Internally, each view is stored in an XML schema. The XML schema allows to attach long
texts, units and tooltips to the items of a table, and thus to show meta-data information to the
user. The XML schema hence replaces look up tables in a DBMS. It may equally store

information regarding the pivoting, the view type (table, map, different graphic types), and for

GGIG, Wolfgang Britz, Version March 2021 60

GGIG Graphical Interface Generator — Programming Guide

maps, classification, color ramp and number of classes. The views can be grouped into logical

entities, and are shown as a popup menu to the user.

Tabular views may feature column and row groups. Empty columns and rows can be hidden;
tables can be sorted by column, with multiple sort columns supported. Numerical filter can be

applied to columns.

User Ve GUI:

definitions Selection/pivot...

supplied
filters

]

A 4

SN -

Data model

The underlying data model is very simple and straightforward. All data are kept in one large
multi-dimensional sparse data cube, and all values must either be float values or strings. Each
data dimension is linked to a vector of string keys. Those keys are the base for the filter
definitions. Currently, data cubes with up to 10 dimensions are used (regions — activities —
items — years — policy scenarios — dim5 ... dim9). The data storage model is equally optimised
to the specific needs. As only float values or strings are supported, all non-zero data can be
stored as one primitive array of either floats or strings. To allow fast and efficient indexing, a
linear index is constructed from the multi-dimensional data cube, and the non-zero data and
their indices are stored in a hash table. That renders data retrieval very fast. All data are

loaded in memory at initialisation time: For moderately long linear indices about 10 Bytes are

GGIG, Wolfgang Britz, Version March 2021 61

GGIG Graphical Interface Generator — Programming Guide

required to store a non-zero float and its index as an integer. If the maximal linear index is
very large, the index is stored as a long and the storage need goes up to about 16 Bytes. 20
Million non-zero numbers can hence be hosted in about 200 Mbytes.

The data are read from a generic file format generated by GAMS (General Algebraic
Modelling System, a commonly used software package in economic modelling) called GDX,
the software package on which CAPRI is based. Access to GDX is handled via an API
provided by GAMS.

Client based solution

Technically, the exploitation tool is completely client based. That reflects the specific user
profile of the CAPRI modelling system where the exploitation tool is integrated with an
economic model and tools building up its data base. The main aim of the tool is to support
forward looking policy analysis. For this purpose, users will create their own scenarios and in
some cases even own variants of the export data, which will lead to processes requiring
considerable processing and storage resources. A client-server solution where the production
process and data storage would need to be hosted on a web server is therefore not a preferred
solution, also as users will often develop variants of the modelling system by code
modification in GAMS, and contribute to its development. The structure of the data driver
would however very easily support linkage to a network or WEB based data bases. It should
however be noted that the data base and GAMS code are managed via a Software versioning
system, which is a kind of client-server environment. The reader is reminded that client-based

does not exclude to store programs and data on file-server in a network environment.

The geometry model

The mapping viewer of GGIG is based on very simple and straightforward concepts. First of
all, it basically supports solely polygon geometries, line strings (interpreted as rivers) and
points for labelling. The storage model is optimised to host rectangles, and is especially
efficient if the polygons vertexes are all points in a raster. The topology is not read from a
shapefile, but stored in a generic rather simple format. However, a shapefile interface to
generate the generic format is available. The vertices are stored in X,y coordinates, already
projected in a rectangular coordinate system, and the viewer does not deal with the geographic
coordinate system, but simply scales the rectangular coordinates in the viewport. The viewer
in its current version solely supports one layer of quantities. Those restrictions naturally allow

reducing memory needs, and, thanks to the rather simple data structures, also rather allow

GGIG, Wolfgang Britz, Version March 2021 62

GGIG Graphical Interface Generator — Programming Guide

performing drawing operations. It should also be noted that the JIT compiler of JAVA is

indeed astonishingly fast given that that Java code is only precompiled.

The biggest topology currently handled simultaneously covers an intersection of Corinne
Land Cover, slope classes and Soil Morphological Units and comprises around 2.7 Million
polygons for EU27. As the majority of the polygons are rectangles, not more then 6-7 Million
points needed to be stored. The topology handler and the drawing routines separate rectangles,
for which only the two outer points are stored, from polygons, for which the vertices and

centroids are stored.

The viewer is written in Java. Swing is used for the GUI in order to profit from the simplest
implementation, the viewer has been written completely new, and is not based on existing
GIS libraries. Even certain standard JAVA classes as e.g. for hash tables, have been replaced
by own implementations, to reduce implementation overhead. Some care was given to support
flexibility in classification, given that only quantities are supported, so that the tool covers
natural breaks, quantiles, equal spread, mean standard and nested means. Area weighting is
supported as well.

In order to export data to other applications, the tools support first of all tab delimited
clipboard export, allowing import e.g. into EXCEL. Maps can be exported as JPEGs over the
clipboard and to disk in several other formats. Alternatively, the user may export the data to
an external file, in CSV format, DBF, to MS Access or to GAMS. DBF export will generate a

second file comprising meta data.

The exploitation tools of CAPRI build on a rather simple structure. Each CAPRI work step
stores its results as a GAMS parameter, representing a multi-dimensional sparse cube which is
stored as a GDX file. The exploitation loads the non-zeros from one or several GDX files into
memory. However, given the length of the different dimensions and the use of short codes,
the user would be typically lost on his own in the large tables. The XML definition file is the
equivalent of a collection of “SQL queries” as it defines views which combine filters in the
dimensions of the cube with information on how to show the results (pivot, table, graph or

map).

GGIG, Wolfgang Britz, Version March 2021 63

GGIG Graphical Interface Generator — Programming Guide

XML definitions for views

Why a XML definition files for views?

The exploitation tools of GGIG build on a rather simple structure. Each GIGG task can store
its results as GAMS parameter representing a multi-dimensional sparse cube and save it on
disk as a GDX file. The exploitation loads the non-zeros from one or several GDX files into
memory. However, given the length of the different dimensions and the use of short codes,
the user would be typically lost on his own in the large tables, which can comprise several
million non-zero data and basically an unlimited amount of zero cells. The XML definition
file defines the views explained above, and allows a structured and user-friendly way to
exploit the results of the different work steps. It also separates raw data from the views and
from the GUI code itself, which requires relatively little information about the underlying data
and their structure besides what is provided by the definition files. XML is an industry
standard to store structured information in non-binary text files, which explains why that

format was chosen.

As explained in more detail in the excurse above, each view can be understood as to define a
report, i.e. a combination of a selection query and information on the presentation of the

selected values.
The structure of the XML definition files for the views

General comments

The XML parser used by the GUI’s java is a standard XML parser. The table viewer currently

supports up to 10 dimensions, which are named as:
1. Region
2. Activity
3. Product
4. Scenario
5. Year
6. Dim5, Dim6, Dim7, Dim8, Dim9

in the XML-file. These “logical dimensions” which are used in the XML definition file can be

mapped to any dimension of the original data cube read in by the java code. Pivoting can then

GGIG, Wolfgang Britz, Version March 2021 64

GGIG Graphical Interface Generator — Programming Guide

be used to map these “logical” dimensions to viewport dimensions seen by the user such as

the columns and rows of a table.

Necessary tags for tables
A table definition is found between the <table> ... </table> tags. It must at least define:

e The table theme, such as <theme>Welfare</theme>. The themes are shown as a drop-

down menu in the exploitation tools.

e The table name, such as <name>Welfare comparison between Member

States</name>. The names must be unique.

e The items of the tables and the dimension where they stem from (or that non item

dimension is used).

The order of the themes and table names will define their order in the drop-down menu.

Alternatively, the <themes> tag can be used to order the themes e.g.

<themes*Meta,Scenario shifter,

Welfare ,CAP,Policy indicators,
Prices,Harkets,BioFuels,Trade,Farm,Farm - totals,Farm EU,
Feed,Fertilizer ,Environment,

CGE Heta,CGE Policy,CGE Accounts,CGE Price,CGE Production,
HSHU,DHDC ,Multi-Functionality,Energy</themes>

Defining the items of the table

The underlying idea of having a “hand defined” list of items for one of the definitions stems
from the observation that most tables have only a very limited number of columns, and that
these are normally formatted with care regarding their text comprised. A table therefore
typically comprises a definition of items, but the items must not necessarily be mapped in the

column viewport.
<item>
<itemName>Money metric</itemName>
<key>CSSP</key>
<unit>Mio Euro</unit>

<longtext>Consumer welfare measurement: expenditures necessary to reach utility in

current simulation under prices of reference scenario</longtext>

<link>Money metric</link>

GGIG, Wolfgang Britz, Version March 2021 65

GGIG Graphical Interface Generator — Programming Guide

</item>

An item definition is enclosed in the <item>...</item> tags. It must at least comprise a <key>
and an <itemName> tag. The case sensitive key must match the symbol identifier as found in

the GDX file, whereas the itemName can be freely chosen.
Facultative tags are:

<unit>: a physical unit shown in table

<longtext>: a text shown when the mouse hovers of the column
<link>: a link to another table for the table cells under the column.

<colormode>: the color mode used when a map is drawn for the item. The following modes

are supported:
e GYR Green Yellow Red
e RYG Red Yellow Green
e GR GreenRed
e RG RedGreen
e BG Blue Green
e GB GreenBlue
e WB White Black
e BW Black White
e LD LightBlue Dark Blue
e DL Dark Blue Light Blue

<eval>: the item is calculated from other items, e.g. <eval>VAL + VAL[* BlueBox,****

+ VAL[*,DeMinimis,*** *]</eval>

<node>: the item defines a vertex in a network graph

<edge>: the item defines additional an edge in a network graph

In order to define the dimension from which the items are taken, the user can set either:
<itemDim>region</itemDim>

Deprecated is the old style:

GGIG, Wolfgang Britz, Version March 2021 66

GGIG Graphical Interface Generator — Programming Guide

<isActivity>NO</isActivity>
It is also possible to refrain from declaring any items:
<itemDim>none</itemDim>

In which case only the filters used on the different dimension are active. The possibility to

attached attributes to each item is lost in that case.

Which means that the table loops over the products, and the items refer to the activity
dimension. A typically example is a table with market balance elements: items such as
“FEDM?” are found in the columns of the CAPRI tables where also the activities are stored.

Consequently, the table will loop over the products, and not over the activities. Alternatively:
<isActivity>YES</isActivity>

allows only items from the product dimension, and lets the table loop over the activities. A
typical example provides a table showing activity levels, yield or economic indicators for the

production activities.
Tables can also be defined solely on filters without any specific item dimension:

{table>
<theme>Trade{/theme>
<name>Exports<{/name>
<region$el>all</regionSel>
<product3el>all<{/productSel>
<activitySel>trade|transCost|tariff_regex<{/factivitySel>
<hideEmptyRous>yes</hideEmptyRous>
<hideEmptyCols>yes</hideEmptyCols>
<dim5Sel>reg<{/dim55el>
<dim5Text>Importing region{/dim5Text>
<itemDim>none<{/itemDim>
<defPivot>BRSD</defPivot>

<ftable>

Additional tags: <subTheme>

Allows introducing sub-themes in the table selection.

Additional tags: <defpivot>

The definition of the default pivot for a view consists of a setting as shown below
<defpivot>rowGroups=product;rows=dim7;columnGroups=;columns=scenario;</defpivot>
Deprecated old style

The deprecated old style to define the pivot string consists of 4 characters. The first character

position is for the table row blocks, the second for the table rows, the third for the column

GGIG, Wolfgang Britz, Version March 2021 67

GGIG Graphical Interface Generator — Programming Guide

blocks and the last for the columns. The logical dimensions are labelled with the following

characters:

A Activity
D Dim5

I Items

M Activity and Product merged

P products

Q Year and dim5 merged
Scenario

R regions

X Region and dim5 merged

5..9 Dim5...Dim9

0 Empty

The definition <defpivot>0R0S</defpivot> thus means: regions are in the rows, scenarios in
the columns. The definition <defpivot>PISR</defpivot> puts the products in the row blocks,

the items in the rows, the scenarios in the column blocks and the regions in the columns.

Additional tags: <defview>

Defines the default view used for the tables, the list of default views is equal to what the user

can select in the drop-down box:

Table "
Line chark
Bar chark

Area chark

Spider chart

Pie chart

Box and Whisker chart
Histograrm

Map

Flowmap

Fienmap

Markow chart

GGIG, Wolfgang Britz, Version March 2021 68

GGIG Graphical Interface Generator — Programming Guide

Additional tags: <COO>

This tag defines the geometry to use for maps. Currently, the following geometry files are
available in CAPRI:

NUTSILzip NUTS 2 geometry for countries covered by the supply module

MS.zip NUTS 0 geometry for the countries covered by the supply module

RMS.zip Global geometry for the regions with behavioural functions in the market
model

RM.zip Global geometry for the trade blocks in the market model

HSMU.zip 1x1 km pixel clusters for EU 27 without Malta and Cyprus

There are also 1x1 km pixel clusters for individual Member States, but these are internally
passed to the viewer when only one country is shown.

Alternative texts for the dimensions

Normally, the names for the dimensions are passed to the view by Java. However, their name
can be changed by:

<regionText>....</regionText>
<activityText>...<activityText>
<regionText>...<regionText>
<productText>...<productText>
<scenText>...<scenText>

<dim5Text>...<dim5Text> ... <dim9Text>...<dim9Text>
<yearText>...<yearText>

That text is shown:

e As description above the outer drop-down selection boxes:

Region Years

} European Lnion 27 w2013 -

GGIG, Wolfgang Britz, Version March 2021 69

GGIG Graphical Interface Generator — Programming Guide

e In the pivot dialogue:

e And in gaphics / map titles and the like.

Additional tags: <clone>

The tag uses the item and other definitions from another table, and can be used e.g. to show

the same selection in a different pivot or view types, e.g.:

<table:
{theme>Welfare</theme>
{name>Welfare comparison, overview across regions</namel

{clone>Welfare overview{fclone}
{defpivot>BRBS{/defpivot?
<ftable>

The clone tag must immediately follow the name tag, as otherwise, preceding definitions are

lost.

Additional tags: <drop>

That tag is uses in conjunction with a <clone> and allows removing an item from the cloned
table definition:

<tableX
<name>Income, per capita<{/name>
{clone>Income<{/clone>
{drop>Private consumption price index<{/drop>

</table:

Further tags

There is a longer list of further tags which refer e.g. to definitions of graphs. They are here

only listed in here with their default settings without a detailed explanation:

GGIG, Wolfgang Britz, Version March 2021 70

GGIG Graphical Interface Generator — Programming Guide

"FontsizeRelative","6@",
"zerosAsMissingValues”, "false",
"blueishColors","false",
"showMarkers","false",

"domainGridiinesVisible"” , "true”,

"rangeGridilinesvisible”, "trus",
"showAxisTitles"”, "true”,
"ShowlastColumn”, "true”,
"commonRange”, "false™,
"autocRangeIncludesZerc”, "trus”,
"nBins","8",

"quantile”,"s@a",

"spiderChartMaxAxis", 6",
"spiderChartMax0Obs”,"s",
"spiderChartFilled”,"true"”,
"spiderChartForegroundTransparency™, 18",

"pieChartMaxPlots","16",
"pieChartMaxPies”, 25",
"pieChartLabelMinimum®™,"s",
"PieChart3D","true”,
"PieChartSimplelabels”, "false”,

"PieChartCircular”,"false”,
"PieChartForegroundTransparency”, 28",

/* The maximum number of bar plot with their own value range axis */
"barChartMaxPlots","4",

/* The maximum number of bar groups (= elements on the domain axis, taken from the table rows. */
"barChartMaxDomains”™,"18",

/* The maximum number of bars in a bar group, taken from the table column groups. */
"barChartmaxsSeries","5",

"barChart3in”,"true”,

"barChartstacked”,"false”,

"barChartVertical™, "true”,

"BarChartCylinder”,"false"”,

"BarChartForegroundTransparency”, 18",

"barChartDrawldutline”,"false"™,

"barChartDrawshadow”, "false”,

"barChartFilledBars", "true",

"lineChartMax0bs","25",
"lineChartMaxPlots","5",
"LineChartMaxSeries”, 18",
“LineChart3D","false”,
"LineChartVertical”,"true”,
"strokeWidth"”,"2f",

“LineChartDrawLines”, "true”,
"LineChartDrawShapes”, "true”,
"LineChartFeregroundTransparency™,"@",
"lineChartCumulative"” , "false™,

"lineChartsort”,"false™

The following list further tags, partially explained above:

GGIG, Wolfgang Britz, Version March 2021

GGIG Graphical Interface Generator — Programming Guide

"theme","null",

"subtheme","null"™,

"name", "null",

"clone™,"null”,

"item","null",

"isactivity","null”,

"itemdim”,"null”,
"regionsel”,"","activitysel”,"","productsel” """, "yearsel" ,"", "scensel" ,"",
"dimssel”,"", "dimgsel"”,"", "dim7sel”, " ", "dimdsel™, """, "dim9sel", " ",

"regiontext”,"", "activitytext","", "producttext”,"", "yeartext","", "scentext","",
"dimstext”,"", "dimgtext”,"", "dim7text", """, "dimdtext"”, """, "dimotext”, """,

'/ to handle later as props of AgpDataView
"defpivet”,"",

"defview”,"",

"fractiondigits","-1lees",

"codesandkeys”,"null™,

"comparedim”,"null”,

"compareitem”,"null™,

"comparemcde™, "null™,

"hideEmptyRows","null",
"hideEmptyCols"™,"null™,
"Co0", "null",

"pdf", "null”,
"evalall”,"null"™,

"language","null”

Filters for the elements in the different dimensions

Without filters, all elements found on a logical dimension will be shown to the user in any
table. The exemptions are the items defined for a specific dimension, see above. In order to
restrict the selection in the other logical dimensions, a selection list can be defined in the table

definition. Take as an example the following XML tag:
<regionSel>MS,RM<regionSel>

It means that the table will only show elements with the tag <region> (see below) which
comprise MS or RM in their <sel> field. The example would refer to the Member States.

There is a specific selection list:
<regionSel>FromDataCube<regionSel>

Which will neglect the elements under <region> as defined in the file, but rather takes any
one found in the data cube. The option was introduced originally for CAPRI to avoid the
necessity to define all 180.000 HSMU codes in the file.

Alternatively, a regex string can be used, e.g.

<dim5Sel>red[0-9]+_regex</dim5Sel>

GGIG, Wolfgang Britz, Version March 2021 72

GGIG Graphical Interface Generator — Programming Guide

In both cases, the code will nevertheless try to locate matching entries in the predefined lists
based on their keys.
Attaching long texts and filters to elements

Items for activities, products, regions and dim5 are typically defined in the file, see the

following example:
<region>
<key>SK020038</key>
<itemName>SKO020 - FT41 / GT100 - Specialist dairying (FT 41)</itemName>
<sel>[all, RS, SK, FA, SKFA, FT41, GT100, FT41GT100]</sel>
<[region>

The definitions for one item are enclosed in the tag (<region>...</region>,

<activity>...</activity>, <product>....</product>, <dim5>...</dim5>).
The order of the items in the tables is defined by these lists.

Each item has a key, which corresponds to the symbol identifier found in the GDX file. The
keys are case sensitive. The itemName is a long text which is typically shown to the user. The
elements found between the <sel> ...</sel> tags can be used as filters in table definitions, or

interactively by the user.

A specific tag is <aggreg>yes</aggreg>. When found for an item in the rows, it will be shown

twice in the table: once in the top part, and then again.

Includes

The XML processor allows to use includes, as seen below:

<%i:zinclude href="generated.xml">
<xi:fallback>

{%¥izinclude href="generated example .xml™ />
<fxi:fallback>
{/xizinclude’

These includes can e.g. be generated by a GAMS process to pass run specific item lists to the

exploitation tools. The following code from “GTAPinGAMS” project shows how to may look
like:

GGIG, Wolfgang Britz, Version March 2021 73

GGIG Graphical Interface Generator — Programming Guide

loop(i,

put "<activity>" /;

put <itemHame>", i.te{i}),"<{/itemHame>" /;
put <key>”, L.tl,"<Skey>” f;

put " <selrall,sectors</sel>" /;

put "<factivity>" /;
|H

That allows to group view definitions used by several tasks in one file, and to use these

groups for a specific task. The following shows an example from CAPRI:

<7¥ml version=""1.8"%7>
<{tables xmlns:xi="http:/ uwww. w3 org/2001/5Include”>
<themes>Welfare,Farm,Farm - totals,Feed,Fertilizer ,Environment</themes?

{xi:include href="viewsicoco_tables.xml"/>
£{%izinclude href="viewsicapreg tables.zml"/>
£#izinclude href="viewsidimdefs.xzml" />

<ftables>

The used of <xi:include> allows to also generated XML files on the fly by GAMS and pass it

to the viewer, e.g. to reflect flexible lists of regions.

The structure of the GAMS generated gdx files used by the

exploitation tools

The exploitation tools load directly the gdx-files generated by the GAMS processes linked to
the tasks described above. The gdx-files only store non-zero numerical values. The main
content of a gdx file are two types of records. The first type provides a list of all labels used to
identify the numerical data in the gdx file as GAMS does not support numerical indices, but
requires character labels. The list does not distinguish for which data dimensions the labels
are used. They are hence typically a mix of product, activity, region and further labels. The
second type of records belongs to GAMS parameters (scalars, vectors, or multi-dimensional
tables). Each non-zero numerical item in each parameter has its own record. Each of these
records provides the numerical data in double precision (depending on the parameter type
there may be different data stored in one record, as for variables its upper and lower bound,
current level and marginal value etc.), and a vector of indices pointing in the list of codes

described above.

Loading the data from gdx files

The data matrices generated by the different tasks as described above and stored in gdx-files
are typically rather sparse, so that it seemed appropriate to load the data from the gdx-file into

hash tables for exploitation purposes. That is done in a two step procedure. In the first step, all

GGIG, Wolfgang Britz, Version March 2021 74

GGIG Graphical Interface Generator — Programming Guide

records from the gdx file are read and vectors of all found indices are stored. The length of
each data dimension is only known when all data records are read, and is equal to the number
of unique indices for each dimension. Once all records are read, the final length of these index
vectors then defines a linear index room for the multi-dimensional table. In a second step, the
records are read again, and the index vectors for each record now allow to define a linear
index in the total table. A hash code is derived from that linear index to store the numerical
values into a hash table. As the number of items to store in the hash table is known
beforehand, a rather simple hash table implementation can be used. If necessary, step one can
be run over several parameters which may be hosted in several gdx files, so that results from

different runs can be merged into one hash table.

As the gdx-files provide lists of all labels used in any parameters stored in that gdx-file, the
index vectors allows to build lists of labels linked for each index in a data dimension. There
exists an additional storage type in the gdx-files to retrieve long-texts to the labels as defined
in GAMS set definitions. However, one label may occur in different sets with different long
texts, and the gdx-file does not store a possibly user defined relation between a data
dimension of a parameter and a specific set, an option termed domain checking in GAMS. In
order to link hence long-texts to the labels used for a specific data dimension, two options are
possible. Firstly, at run time the user may interactively re-establish the link between data
dimensions and specific sets, and thus add long-texts to the labels used on that data dimension

based on his knowledge. Or the relation may be hard coded in the JAVA code.

Design hints for structured programming in GAMS with
GGIG

Using information passed from GGIG

As seen above, GGIG passes information mostly via $SETGLOBAL settings. That has the
advantage that the GAMS coder is rather free how to use the information. Take the following

example (which could be generated from a slider):

4SETGLOBAL STEPS 99.8

There a several ways to use that information in GAMS code, below are a few examples:

1. Round the setting to an integer with $eval in GAMS and use it in a set definition:

GGIG, Wolfgang Britz, Version March 2021 75

GGIG Graphical Interface Generator — Programming Guide

$eval steps round{%steps%)
set step / S1*%STEPS% /;

2. Use it in an combined definition and declaration statement for a scalar
scalar s_steps / %STEPS% /;

3. Use it in assignment

p_control{"steps”) = %STEPS%;

4. Use it for pre-compiler conditions:

$eval steps round{%steps%)
$ifthen %steps% ==

5. Use for GAMS program controls

if { %STEPS% > 18,

1;

Structure your program by tasks

The following example shows how the concepts of tasks can be used on conjunction with

includes to structure a top-level program

$iftheni "%task%" =="Estimate constant terms"

$include ‘est_const.gms®

$iftheni "%task%" =-="Estimate constant terms and trend parameters"
$include 'est const_and trend.gms®

$endif

GGIG, Wolfgang Britz, Version March 2021 76

GGIG Graphical Interface Generator — Programming Guide

The basic idea is to have a common a part which is shared by many tasks and then blocks
which perform task specific operations. As the “Siftheni ... $endif are working at compile
time, not used code is excluded even from compilation which helps to save memory and

reduce the size of the listing.

One entry points for run specific settings

A typical problem with more complex economic simulation models defined in GAMS is the
steering of scenarios. GGIG pushes the GAMS developer to a code structure where all run
specific settings are entered via the single include file generated by GGIG. That does not
imply that all data for a specific scenario are comprised in the include file. It could e.g. mean
that the user has selected via the interface include file(s) with run specific settings and that the

names of these files are passed via the include file to GAMS.

Scenario editor

The scenario editor is an optional tool to be embedded in a GGIG user interface which
supports the user in setting up run specific include files where the content is not stemming
from GUI controls. That parallel way to define run specific input is typically necessary for

more complex tools where e.g. policy scenarios are defined in GAMS code.

The scenario editor is a “predefined” task which must be named “Define scenario”, e.g.

<task>
<namerDefine scenario</name’:
{userLevls>runner ,Administrator ,developper ,debugger</userLevls>
<ftask>

A related setting stores the directory where the input files are found:

{scenarioDir><attr>scen<fattr></scenarioDir>

The default location for user edited files is a sub-directory under scen called “user_scenarios”.

That location can be overwritten by the following setting:

{userScenarioDir><attr>..‘gams\sceniuserScenarios<fattr><{fusericenarioDir>
The tag “calledBy” in the fie header of generated file is filled if the following field is set:

<callingFileForScenarioEditor><attr>COH_.gms<{/attr><fcallingFileForScenarioEditor>

GGIG, Wolfgang Britz, Version March 2021 77

GGIG Graphical Interface Generator — Programming Guide

Batch execution

The batch execution facility is a tool which:
e Allows executing many different tasks after each other without requiring user input.

e Reports the settings used, any errors and GAMS result codes in a HTML page from

which they may queried at a later time.

e Ensures that each new run generates its own listing file, which can be opened from the
HTML page.

e Allows storing the output of the different runs in a separate directory, while reading

input from unchanged result directories.

The purpose of the batch execution facility is therefore at least twofold. On the one hand, it
allows setting up test suits for the GAMS code of a project such as checking for compilation
without errors for all tasks and different settings such as with and without market parts etc.
Secondly, production runs of e.g. different scenarios can be started automatically. Timer
facilities allow starting the batch execution at a pre-scheduled time. Along with functionalities
to compare in a more or less automated way differences in results between versions, the batch

facility is one important step towards quality control.

Each generated include file comprises a block of lines, commented out, which can be copied
into a text file and used with the batch file facility. For details on the use of the batch
execution utility, refer to the user guide.

Generate GAMS documentation

The GUI comprises a tool to generate for each GAMS file and each symbol used HTML
pages which are interlinked. For details on the code documentation facility see the technical
document “Javadoc like technical documentation for CAPRI” to be found on the Capri web

page under technical documents.
The controls on top allow the user:

e To define in which directory the “EXP”, “REF” and “GDX” files are stored which

serve as input into the documentation generator.
e To choose the directory where the HTML files will be generated.

e To select the tasks covered by the documentation generator.

GGIG, Wolfgang Britz, Version March 2021 78

GGIG Graphical Interface Generator — Programming Guide

For details on the use of the GAMS documentation utility, refer to the user guide

Background

System such as CAPRI have grown over years to a rather complex (bio-)economic modelling
system. Its code base consists of hundredth of single GAMS files, and ten thousands of lines.
Not only newcomers face the challenge to get an overview about dependencies in the huge
code base and to link the technical implementation to methodological concepts and
documentation. On top, the large-scale character of CAPRI often asked for technical features
in the GAMS code which are far from the solution chosen for tiny examples as often
presented in courses, as the wide spread usage of dynamic sets, conditional includes, the

usage of $batcinludes or the application of the grid solve feature.

The task of documenting and keeping an overview of the CAPRI code base is certainly not
eased by the fact that basically any object in GAMS has global scope. The concept of
functions of subroutines underlying many other programming languages with clearly defined
lists of variables passed in and out is not implemented in GAMS. Encapsulation and
modularisation are hence not naturally supported by GAMS. That also renders automated

documentation of the code more challenging compared to other languages.

Since quite a while, CAPRI user community discusses about some refactoring of the code
base on more clearer coding standards with the aim to ease code maintenance, documentation
and further development. That refactoring should also cover standard for in-line
documentation, including a better link to the methodological documentation. The project
CAPRI-RD (2009-2013) has attacked some of these tasks for CAPRI in specific working
packages. But clearly, that will only become success if the underlying concept is generally
accepted and implemented by the community of CAPRI developers. That means that the
value added of following coding and documentation standards must be visible to any

developer.

The section here shows how to generate an easy to maintain and useful technical
documentation for GAMS based projects such as CAPRI, based on the example of
JAVADOC (http://de.wikipedia.org/wiki/Javadoc). It is organized as follows. The next short

paragraphs will list desired properties of a technical documentation for a system such as
CAPRI, followed by a more detailed discussion of a proposal for an implementation which is

working as a prototype. The last chapter will then show selected screenshots.

GGIG, Wolfgang Britz, Version March 2021 79

http://de.wikipedia.org/wiki/Javadoc

GGIG Graphical Interface Generator — Programming Guide

Desired properties

The main properties an automated technical documentation of a tool under GGIG such as
CAPRI should fulfil are as follows:

e Avoiding redundancies, i.e. information should whenever possible only inputted once.
Specifically, existing in-line documentation already present in the code should be

ported over to the technical documentation automatically.
e Changes in the code structure should possibly be reflected automatically

e The documentation must be able to reflect different tasks projects and to differentiate
between instances of the same GAMS project used in different configurations (e.g. for

calibration or simulation)

e Its biggest part of the technical documentation should be constructed directly from the
code base in an automated way.

e It should also collect information from the SVN versioning system

Technical implementation
The main ingredients of the implementation are as follows:

e The final format of the technical documentation is based on automatically generated
static HTML pages, following the example of JAVADOC, with some JavaScript to
allow for collapsible trees

e The methodological documentation of a project should be edited in Word, and
converted into a PFD-document. It will comprise references to GAMS sources
(individual GAMS files) or even GAMS objects (variables, equations, models,
parameters). Those references can be addressed in the GAMS code, and the HTML

pages will allow opening the PDF-document at the referenced point.

e As with JAVADOC, technical documentation should be edited as in-line comments
into the GAMS sources, based on clear in-line documentation standards. Each GAMS
source as a file header with standard properties about the file.

e In-line documentation will be mostly based on two levels: the level of individual

GAMS files and on the level of individual GAMS objects. In some cases, that may

GGIG, Wolfgang Britz, Version March 2021 80

GGIG Graphical Interface Generator — Programming Guide

require to break down larger programs in smaller pieces, with a clear task and

eventually clear inputs and outputs.

Overview

The following diagram depicts the general approach. The SVN server will host the GAMS
sources, the documentation builder (Builddoc) as a Java application and the PDF with the
methodological documentation. Users synchronize their local work copies with the server. In
order to avoid developing in Java a new parser for GAMS code, the GAMS compiler itself is
used to generate the necessary input for the technical documentation. Two different types of
files for each “project” or “instance” included in the documentation are used for that purpose

so far:

1. So called “REF?” files, which list information in which files and in which line symbols
are declared, defined, assigned and referenced. They also comprise information about
long texts and domain of the symbols. The “REF” file can be generated by the
argument rf=filename when GAMS is called (e.g. "GAMS capmod a=c
rf=capmod.ref”’). As the GAMS compiler itself is used, conditional includes and the
like are automatically treated as during execution time. That opens also the possibility

to include the generation of the documentation in the GUI.

2. GDX files generated with an empty symbol list at compile time ($GDOUT
module.gdx; SUNLOAD; $GDOUT). The resulting GDX file will comprise all sets,
parameters etc. used by the programs, and most importantly, the set elements as

declared. The name of the GDX file could be passed as a parameter by the GUI.

Those files hence reflect the actual local code base with any local modification, and can be
generated for a specific instance of each GAMS project (e.g. in case of CAPRI’s simulation
engine, CAPMOD, with and without the market module etc.). A JAVA application named
Builddoc parses both types of files, on demand for several projects, and generates static
HTML pages. The GAMS code comprises in-line comments carrying information about
references to the methodological documentation, and the HTML pages comprise calls to the
editor to open the actual source code at the local machine, as well as information about
relation between the different GAMS Symbols.

GGIG, Wolfgang Britz, Version March 2021 81

GGIG Graphical Interface Generator — Programming Guide

Handling of GDX files

The “expand” option generates information about GDXIN and GDXOUT statements as those
are executed at compile time. Consequently, files addressed via GDXIN or GDXOUT are

automatically reported in the documentation system.

Hovever, the file does not comprise information about the “execute load” and
“execute_unload” executed at run time. That is quite clear, as the statements may be
comprised in program structures as loops or if statements where there are never reached at
execution time. We need hence a work around to report those files in the documentation

system if we would avoid writing a new GAMS parser.

However, “$IF EXIST” statements are taken into account by the expand command. It is
therefore proposed to put an “$IF NOT EXIST” combined with an abort statement before all

“execute_load” statements. As seen in:

$IF NOT EXIST ..\dat\arm\GIEPOH.qdx $ABORT ..\dat‘arm\allpop.gdx is missing
execute_load '..%dathyarmyallpop.gdz' WorldPop;

By doing so, the program will already at compile exit if one of the necessary files is missing.

That avoids starting a process and eventually overwriting files which then will stop later due

to missing input data. The HTML page will report that sequence as:

GGIG, Wolfgang Britz, Version March 2021 82

GGIG Graphical Interface Generator — Programming Guide

Inchides found in GAMS\CAPTRD.GMS :

Top | Dedarations | Definiticns | Assignments | References | Includes | s included by

Project

(=)
DATARMALLPOP.GDX captrd IF EXIST - next Line : ' execute_load ' \dat\arm'allpop.gdx' WorldPop;'

File Action

The use of “SIF EXIST” in the context of “execute_unload” can only be motivated with the
fact to produce code which is better documented. Here, is it proposed to warn the user at run

time about the fact that the file is overwritten.

Index

Controls for selections, multiple selections Help system 46

allowed 33 Interface layout 43

Controls for selections, radiobuttons 36 Left aligned 43

Controls for selections, single selections
allowed 32

On/Off settings, checkbox 29

Predefined selection groups in multilists 34

Controls to change numerical values, slider 38
Several controls on one line 43

Controls to change numerical values, spinner
39 Spread alignment 44

Controls to change numerical values, tables 40 String input, textfield 28

File selection, single files 30 Structuring controls, panel 27

File selection, subdirectories 31 Structuring controls, separator 27

Generate GAMS documentation 78 Structuring controls, tab 26

Table viewer, XML definition file 64

References

Britz W., and M’Barek R. (2003). Benlmpact: a decision support system for agricultural policy in
Benin. Poster paper at 25th International Conference of IAAE, Durban, South Africa 16-22
August

Britz, W. (2014a): A New Graphical User Interface Generator for Economic Models and its
Comparison to Existing Approaches, German Journal of Agricultural Economics 63(4): 271-285

Britz, W. (2014b): The Graphical User Interface for CAPRI version 2014, Uni Bonn, Institute for Food
and Resource Economics, http://www.capri-model.org/docs/Gui2014.pdf

GGIG, Wolfgang Britz, Version March 2021 83

GGIG Graphical Interface Generator — Programming Guide

Britz, W. and Kallrath, J. (2012). Economic Simulation Models in Agricultural Economics: The Current
and Possible Future Role of Algebraic Modelling Languages, in: Kallrath, J. (eds.). Algebraic
Modelling Systems: Modelling and Soving Real World Optimization Problems, Springer,
Heidelberg, Germany, 199-212

Britz, W., Dees, M., Walkiewicz, J. (2014): A Forest Sector Model for the Region Baden-Wiirttemberg
in Germany, selected paper presented at the Bioenergy from Forest 2014, September 15-18,
2014, Helsinki (Finland)

Britz, W., Perez Dominguez, I. and Badri Narayanan, G. (2015): Analyzing results from agricultural
large-scale Economic Simulation Model: Recent Progress and the Way Ahead, German Journal
of Agricultural Economics, Forthcoming

Britz, Wolfgang (2009). Sequentially linking a village CGE to farm-household models - a focus on
transaction costs. Presentation at the workshop on "Evaluation of Rural Development Policies:
Theory and Application", University of Kiel. July 13-14, 2009.

Dol, W. (2006). GAMS Simulation Environment. LEI The Hague, 128 pages, URL:
http://www3.lei.wur.nl/gamstools/gse.doc

Heidecke, C., Heckelei, T. (2010). Impacts of changing water inflow distributions on irrigation and
farm income along the Draa River in Morocco, Agricultural Economics 41(2): 135 —149

Jansen, J., Adelle, C., Crimi, J., Dick, J., Helming, K., Jacob, K., Janssen, S., Jordan, A., Podhora, A., Reis,
S., Roosenschoon, O., Saarela, S.R,. S6derman, T., Turnpenny, J., Weiland, S. and Wien J.E.
(2012): The LIAISE Approach to Unite Researchers and Practitioners in a Community of Experts
on Impact Assessment. 2012 Berlin Conference on the Human Dimensions of Global
Environmental Change on "Evidence for Sustainable Development". In: http://www.liaise-
noe.eu/system/files/Berlin%20conference LIAISE%20approach final.pdf.

Kuhn, A,, Britz, W., Willy, D. K., van Oel, P. (2014): Simulating the viability of water institutions under
volatile rainfall conditions — The case of the Lake Naivasha Basin, Environmental Modelling &
Software, available inline since 16" September 2014

Lengers, B., Britz, W., (2012). The choice of emission indicators in environmental policy design: an
analysis of GHG abatement in different dairy farms based on a bio-economic model approach,
Review of Agricultural and Environmental Studies 93, 117-144

Nilsson, M., Jordan, A., Turnpenny, J., Hertin, J., Nykvist, T. and Russel, D. (2008): The use and non-
use of policy appraisal tools in public policy making: an analysis of three European countries
and the European Union. Political Science, 41 (4): 335-355

Rizzoli, A.E. et al. (2009). Updated version of final design and of the architecture of SEAMLESS-IF
Report No.47, SEAMLESS integrated project, EU 6th Framework Programme, contract no.
010036-2, www.SEAMLESS-IP.org, 31 pp, ISBN no. 978-90-8585-590-3

Schroeder, L. A., Gocht, A., Britz, W. (2014): The Impact of Pillar Il Funding: Validation from a
Modelling and Evaluation Perspective, Journal of Agricultural Economics (in press)

Wieck, C., Schliter, S. W., Britz, W. (2012). Assessment of the Impact of Avian Influenza Related
Regulatory Policies on Poultry Meat Trade and Welfare, The World Economy 35(8): 1037-1052

GGIG, Wolfgang Britz, Version March 2021 84

http://www.liaise-noe.eu/system/files/Berlin%20conference_LIAISE%20approach_final.pdf
http://www.liaise-noe.eu/system/files/Berlin%20conference_LIAISE%20approach_final.pdf

